В соответствии с тремя основными возможностями - принятие решения в условиях полной определенности, риска и неопределенности - методы и алгоритмы принятия решения можно разделить на три основных вида: аналитические, статистические и основанные на нечеткой формализации. В каждом конкретном случае метод принятия решения выбирается, исходя из поставленной задачи, доступных исходных данных, имеющихся моделей задачи, среды принятия решения, процесса принятия решения, требуемой точности решения, личных предпочтений аналитика.

В некоторых информационных системах процесс выбора алгоритма может быть автоматизирован:

В соответствующей автоматизированной системе заложена возможность использования множества разнотипных алгоритмов (библиотека алгоритмов);

Система в диалоговом режиме предлагает пользователю ответить на ряд вопросов об основных характеристиках рассматриваемой задачи;

По результатам ответов пользователя система предлагает наиболее подходящий (в соответствии с заданными в ней критериями) алгоритм из библиотеки.

2.3.1 Вероятностно-статистические методы принятия решения

Вероятностно-статистические методы принятия решения (МПР) используются в том случае, когда эффективность принимаемых решений зависит от факторов, представляющих собой случайные величины, для которых известны законы распределения вероятностей и другие статистические характеристики. При этом каждое решение может привести к одному из множества возможных исходов, причем каждый исход имеет определенную вероятность появления, которая может быть рассчитана. Показатели, характеризующие проблемную ситуацию, также описываются с помощью вероятностных характеристик.При таких ЗПР ЛПР всегда рискует получить не тот результат, на который ориентируется, выбирая оптимальное решение на основе осредненных статистических характеристик случайных факторов, то есть решение принимается в условиях риска.

На практике вероятностные и статистических методы часто применяются, когда сделанные на основе выборочных данных выводы переносятся на всю совокупность (например, с выборки на всю партию продукции). Однако при этом в каждой конкретной ситуации следует предварительно оценить принципиальную возможность получения достаточно достоверных вероятностных и статистических данных.

При использовании идей и результатов теории вероятностей и математической статистики при принятии решений базой является математическая модель, в которой объективные соотношения выражены в терминах теории вероятностей. Вероятности используются прежде всего для описания случайности, которую необходимо учитывать при принятии решений. Имеются в виду как нежелательные возможности (риски), так и привлекательные («счастливый случай»).

Суть вероятностно-статистических методов принятия решений состоит в использовании вероятностных моделей на основе оценивания и проверки гипотез с помощью выборочных характеристик .

Подчеркнем, что логика использования выборочных характеристик для принятия решений на основе теоретических моделей предполагает одновременное использование двух параллельных рядов понятий – относящиеся к теории (вероятностной модели) и относящиеся к практике (выборке результатов наблюдений). Например, теоретической вероятности соответствует частота, найденная по выборке. Математическому ожиданию (теоретический ряд) соответствует выборочное среднее арифметическое (практический ряд). Как правило, выборочные характеристики являются оценками теоретических характеристик.

К преимуществам использования этих методов относится возможность учета различных сценариев развития событий и их вероятностей. Недостатком этих методов является то, что используемые в расчетах значения вероятностей развития сценариев обычно практически очень трудно получить.

Применение конкретного вероятностно-статистического метода принятия решений состоит из трех этапов:

Переход от экономической, управленческой, технологической реальности к абстрактной математико-статистической схеме, т.е. построение вероятностной модели системы управления, технологического процесса, процедуры принятия решений, в частности по результатам статистического контроля, и т.п.

Проведение расчетов и получение выводов чисто математическими средствами в рамках вероятностной модели;

Интерпретация математико-статистических выводов применительно к реальной ситуации и принятие соответствующего решения (например, о соответствии или несоответствии качества продукции установленным требованиям, необходимости наладки технологического процесса и т.п.), в частности, заключения (о доле дефектных единиц продукции в партии, о конкретном виде законов распределения контролируемых параметров технологического процесса и др.).

Вероятностную модель реального явления следует считать построенной, если рассматриваемые величины и связи между ними выражены в терминах теории вероятностей. Адекватность вероятностной модели обосновывают, в частности, с помощью статистических методов проверки гипотез.

Математическая статистика по типу решаемых задач обычно делится на три раздела: описание данных, оценивание и проверка гипотез. По виду обрабатываемых статистических данных математическая статистика делится на четыре направления:

Одномерная статистика (статистика случайных величин), в которой результат наблюдения описывается действительным числом;

Многомерный статистический анализ, где результат наблюдения над объектом описывается несколькими числами (вектором);

Статистика случайных процессов и временных рядов, где результат наблюдения – функция;

Статистика объектов нечисловой природы, в которой результат наблюдения имеет нечисловую природу, например, является множеством (геометрической фигурой), упорядочением или получен в результате измерения по качественному признаку.

Пример, когда целесообразно использовать вероятностно-статистические модели.

При контроле качества любой продукции для принятии решения о том соответствует ли выпускаемая партия продукции установленным требованиям, из нее отбирается выборка. По результатам контроля выборки делается заключение о всей партии. В этом случае очень важно избежать субъективизма при формировании выборки, т.е необходимо, чтобы каждая единица продукции в контролируемой партии имела одинаковую вероятность быть отобранной в выборку. Выбор на основании жребия в такой ситуации не является достаточно объективным. Поэтому в производственных условиях отбор единиц продукции в выборку обычно осуществляют не с помощью жребия, а по специальным таблицам случайных чисел или с помощью компьютерных датчиков случайных чисел.

При статистическом регулировании технологических процессов на основе методов математической статистики разрабатываются правила и планы статистического контроля процессов, направленные на своевременное обнаружение разладки технологических процессов и принятия мер к их наладке и предотвращению выпуска продукции, не соответствующей установленным требованиям. Эти меры нацелены на сокращение издержек производства и потерь от поставки некачественных единиц продукции. При статистическом приемочном контроле на основе методов математической статистики разрабатываются планы контроля качества путем анализа выборок из партий продукции. Сложность заключается в том, чтобы уметь правильно строить вероятностно-статистические модели принятия решений, на основе которых можно ответить на поставленные выше вопросы. В математической статистике для этого разработаны вероятностные модели и методы проверки гипотез3.

Кроме того, в ряде управленческих, производственных, экономических, народнохозяйственных ситуаций возникают задачи другого типа – задачи оценки характеристик и параметров распределений вероятностей.

Или при статистическом анализе точности и стабильности технологических процессов надлежит оценить такие показатели качества, как среднее значение контролируемого параметра и степень его разброса в рассматриваемом процессе. Согласно теории вероятностей в качестве среднего значения случайной величины целесообразно использовать ее математическое ожидание, а в качестве статистической характеристики разброса – дисперсию, среднее квадратическое отклонение или коэффициент вариации. Отсюда возникает вопрос: как оценить эти статистические характеристики по выборочным данным и с какой точностью это удается сделать? Аналогичных примеров в литературе много. Все они показывают, как теория вероятностей и математическая статистика могут быть использованы в производственном менеджменте при принятии решений в области статистического управления качеством продукции.

В конкретных областях применений используются как вероятностно-статистические методы широкого применения, так и специфические. Например, в разделе производственного менеджмента, посвященного статистическим методам управления качеством продукции, используют прикладную математическую статистику (включая планирование экспериментов). С помощью ее методов проводится статистический анализ точности и стабильности технологических процессов и статистическая оценка качества. К специфическим методам относятся методы статистического приемочного контроля качества продукции, статистического регулирования технологических процессов, оценки и контроля надежности и др.

В производственном менеджменте, в частности, при оптимизации качества продукции и обеспечения соответствия требованиям стандартов особенно важно применять статистические методы на начальном этапе жизненного цикла продукции, т.е. на этапе научно-исследовательской подготовки опытно-конструкторских разработок (разработка перспективных требований к продукции, аванпроекта, технического задания на опытно-конструкторскую разработку). Это объясняется ограниченностью информации, доступной на начальном этапе жизненного цикла продукции, и необходимостью прогнозирования технических возможностей и экономической ситуации на будущее.

Наиболее распространенными вероятностно-статистическими методами являются регрессионный анализ, факторный анализ, дисперсионный анализ, статистические методы оценки риска, метод сценариев и т.д. Все большее значение приобретает область статистических методов, посвященная анализу статистических данных нечисловой природы, т.е. результатов измерений по качественным и разнотипным признакам. Одно из основных применений статистики объектов нечисловой природы - теория и практика экспертных оценок, связанные с теорией статистических решений и проблемами голосования.

Роль человека при решении задач методами теории статистических решений заключается в постановке задачи, т. е. в приведении реальной задачи к соответствующей типовой, в определении вероятностей событий на основе статистических данных, а также в утверждении получаемого оптимального решения.

Как используются теория вероятностей и математическая статистика? Эти дисциплины – основа вероятностно-статистических методов принятия решений. Чтобы воспользоваться их математическим аппаратом, необходимо задачи принятия решений выразить в терминах вероятностно-статистических моделей. Применение конкретного вероятностно-статистического метода принятия решений состоит из трех этапов:

Переход от экономической, управленческой, технологической реальности к абстрактной математико-статистической схеме, т.е. построение вероятностной модели системы управления, технологического процесса, процедуры принятия решений, в частности по результатам статистического контроля, и т.п.

Проведение расчетов и получение выводов чисто математическими средствами в рамках вероятностной модели;

Интерпретация математико-статистических выводов применительно к реальной ситуации и принятие соответствующего решения (например, о соответствии или несоответствии качества продукции установленным требованиям, необходимости наладки технологического процесса и т.п.), в частности, заключения (о доле дефектных единиц продукции в партии, о конкретном виде законов распределения контролируемых параметров технологического процесса и др.).

Математическая статистика использует понятия, методы и результаты теории вероятностей. Рассмотрим основные вопросы построения вероятностных моделей принятия решений в экономических, управленческих, технологических и иных ситуациях. Для активного и правильного использования нормативно-технических и инструктивно-методических документов по вероятностно-статистическим методам принятия решений нужны предварительные знания. Так, необходимо знать, при каких условиях следует применять тот или иной документ, какую исходную информацию необходимо иметь для его выбора и применения, какие решения должны быть приняты по результатам обработки данных и т.д.

Примеры применения теории вероятностей и математической статистики. Рассмотрим несколько примеров, когда вероятностно-статистические модели являются хорошим инструментом для решения управленческих, производственных, экономических, народнохозяйственных задач. Так, например, в романе А.Н.Толстого «Хождение по мукам» (т.1) говорится: «мастерская дает двадцать три процента брака, этой цифры вы и держитесь, - сказал Струков Ивану Ильичу».

Встает вопрос, как понимать эти слова в разговоре заводских менеджеров, поскольку одна единица продукции не может быть дефектна на 23%. Она может быть либо годной, либо дефектной. Наверно, Струков имел в виду, что в партии большого объема содержится примерно 23% дефектных единиц продукции. Тогда возникает вопрос, а что значит «примерно»? Пусть из 100 проверенных единиц продукции 30 окажутся дефектными, или из 1000 – 300, или из 100000 – 30000 и т.д., надо ли обвинять Струкова во лжи?

Или другой пример. Монетка, которую используют как жребий, должна быть «симметричной», т.е. при ее бросании в среднем в половине случаев должен выпадать герб, а в половине случаев – решетка (решка, цифра). Но что означает «в среднем»? Если провести много серий по 10 бросаний в каждой серии, то часто будут встречаться серии, в которых монетка 4 раза выпадает гербом. Для симметричной монеты это будет происходить в 20,5% серий. А если на 100000 бросаний окажется 40000 гербов, то можно ли считать монету симметричной? Процедура принятия решений строится на основе теории вероятностей и математической статистики.

Рассматриваемый пример может показаться недостаточно серьезным. Однако это не так. Жеребьевка широко используется при организации промышленных технико-экономических экспериментов, например, при обработке результатов измерения показателя качества (момента трения) подшипников в зависимости от различных технологических факторов (влияния консервационной среды, методов подготовки подшипников перед измерением, влияния нагрузки подшипников в процессе измерения и т.п.). Допустим, необходимо сравнить качество подшипников в зависимости от результатов хранения их в разных консервационных маслах, т.е. в маслах состава А и В . При планировании такого эксперимента возникает вопрос, какие подшипники следует поместить в масло состава А , а какие – в масло состава В , но так, чтобы избежать субъективизма и обеспечить объективность принимаемого решения.

Ответ на этот вопрос может быть получен с помощью жребия. Аналогичный пример можно привести и с контролем качества любой продукции. Чтобы решить, соответствует или не соответствует контролируемая партия продукции установленным требованиям, из нее отбирается выборка. По результатам контроля выборки делается заключение о всей партии. В этом случае очень важно избежать субъективизма при формировании выборки, т.е необходимо, чтобы каждая единица продукции в контролируемой партии имела одинаковую вероятность быть отобранной в выборку. В производственных условиях отбор единиц продукции в выборку обычно осуществляют не с помощью жребия, а по специальным таблицам случайных чисел или с помощью компьютерных датчиков случайных чисел.

Аналогичные проблемы обеспечения объективности сравнения возникают при сопоставлении различных схем организации производства, оплаты труда, при проведении тендеров и конкурсов, подбора кандидатов на вакантные должности и т.п. Всюду нужна жеребьевка или подобные ей процедуры. Поясним на примере выявления наиболее сильной и второй по силе команды при организации турнира по олимпийской системе (проигравший выбывает). Пусть всегда более сильная команда побеждает более слабую. Ясно, что самая сильная команда однозначно станет чемпионом. Вторая по силе команда выйдет в финал тогда и только тогда, когда до финала у нее не будет игр с будущим чемпионом. Если такая игра будет запланирована, то вторая по силе команда в финал не попадет. Тот, кто планирует турнир, может либо досрочно «выбить» вторую по силе команду из турнира, сведя ее в первой же встрече с лидером, либо обеспечить ей второе место, обеспечив встречи с более слабыми командами вплоть до финала. Чтобы избежать субъективизма, проводят жеребьевку. Для турнира из 8 команд вероятность того, что в финале встретятся две самые сильные команды, равна 4/7. Соответственно с вероятностью 3/7 вторая по силе команда покинет турнир досрочно.

При любом измерении единиц продукции (с помощью штангенциркуля, микрометра, амперметра и т.п.) имеются погрешности. Чтобы выяснить, есть ли систематические погрешности, необходимо сделать многократные измерения единицы продукции, характеристики которой известны (например, стандартного образца). При этом следует помнить, что кроме систематической погрешности присутствует и случайная погрешность.

Поэтому встает вопрос, как по результатам измерений узнать, есть л систематическая погрешность. Если отмечать только, является ли полученная при очередном измерении погрешность положительной или отрицательной, то эту задачу можно свести к предыдущей. Действительно, сопоставим измерение с бросанием монеты, положительную погрешность – с выпадением герба, отрицательную – решетки (нулевая погрешность при достаточном числе делений шкалы практически никогда не встречается). Тогда проверка отсутствия систематической погрешности эквивалентна проверке симметричности монеты.

Целью этих рассуждений является сведение задачи проверки отсутствия систематической погрешности к задаче проверки симметричности монеты. Проведенные рассуждения приводят к так называемому «критерию знаков» в математической статистике.

При статистическом регулировании технологических процессов на основе методов математической статистики разрабатываются правила и планы статистического контроля процессов, направленные на своевременное обнаружение разладки технологических процессов и принятия мер к их наладке и предотвращению выпуска продукции, не соответствующей установленным требованиям. Эти меры нацелены на сокращение издержек производства и потерь от поставки некачественных единиц продукции. При статистическом приемочном контроле на основе методов математической статистики разрабатываются планы контроля качества путем анализа выборок из партий продукции. Сложность заключается в том, чтобы уметь правильно строить вероятностно-статистические модели принятия решений, на основе которых можно ответить на поставленные выше вопросы. В математической статистике для этого разработаны вероятностные модели и методы проверки гипотез, в частности, гипотез о том, что доля дефектных единиц продукции равна определенному числу р 0 , например, р 0 = 0,23 (вспомните слова Струкова из романа А.Н.Толстого).

Задачи оценивания. В ряде управленческих, производственных, экономических, народнохозяйственных ситуаций возникают задачи другого типа – задачи оценки характеристик и параметров распределений вероятностей.

Рассмотрим пример. Пусть на контроль поступила партия из N электроламп. Из этой партии случайным образом отобрана выборка объемом n электроламп. Возникает ряд естественных вопросов. Как по результатам испытаний элементов выборки определить средний срок службы электроламп и с какой точностью можно оценить эту характеристику? Как изменится точность, если взять выборку большего объема? При каком числе часов Т можно гарантировать, что не менее 90% электроламп прослужат Т и более часов?

Предположим, что при испытании выборки объемом n электроламп дефектными оказались Х электроламп. Тогда возникают следующие вопросы. Какие границы можно указать для числа D дефектных электроламп в партии, для уровня дефектности D / N и т.п.?

Или при статистическом анализе точности и стабильности технологических процессов надлежит оценить такие показатели качества, как среднее значение контролируемого параметра и степень его разброса в рассматриваемом процессе. Согласно теории вероятностей в качестве среднего значения случайной величины целесообразно использовать ее математическое ожидание, а в качестве статистической характеристики разброса – дисперсию, среднее квадратическое отклонение или коэффициент вариации. Отсюда возникает вопрос: как оценить эти статистические характеристики по выборочным данным и с какой точностью это удается сделать? Аналогичных примеров можно привести очень много. Здесь важно было показать, как теория вероятностей и математическая статистика могут быть использованы в производственном менеджменте при принятии решений в области статистического управления качеством продукции.

Что такое «математическая статистика»? Под математической статистикой понимают «раздел математики, посвященный математическим методам сбора, систематизации, обработки и интерпретации статистических данных, а также использование их для научных или практических выводов. Правила и процедуры математической статистики опираются на теорию вероятностей, позволяющую оценить точность и надежность выводов, получаемых в каждой задаче на основании имеющегося статистического материала» . При этом статистическими данными называются сведения о числе объектов в какой-либо более или менее обширной совокупности, обладающих теми или иными признаками.

По типу решаемых задач математическая статистика обычно делится на три раздела: описание данных, оценивание и проверка гипотез.

По виду обрабатываемых статистических данных математическая статистика делится на четыре направления:

Одномерная статистика (статистика случайных величин), в которой результат наблюдения описывается действительным числом;

Многомерный статистический анализ, где результат наблюдения над объектом описывается несколькими числами (вектором);

Статистика случайных процессов и временных рядов, где результат наблюдения – функция;

Статистика объектов нечисловой природы, в которой результат наблюдения имеет нечисловую природу, например, является множеством (геометрической фигурой), упорядочением или получен в результате измерения по качественному признаку.

Исторически первой появились некоторые области статистики объектов нечисловой природы (в частности, задачи оценивания доли брака и проверки гипотез о ней) и одномерная статистика. Математический аппарат для них проще, поэтому на их примере обычно демонстрируют основные идеи математической статистики.

Лишь те методы обработки данных, т.е. математической статистики, являются доказательными, которые опираются на вероятностные модели соответствующих реальных явлений и процессов. Речь идет о моделях поведения потребителей, возникновения рисков, функционирования технологического оборудования, получения результатов эксперимента, течения заболевания и т.п. Вероятностную модель реального явления следует считать построенной, если рассматриваемые величины и связи между ними выражены в терминах теории вероятностей. Соответствие вероятностной модели реальности, т.е. ее адекватность, обосновывают, в частности, с помощью статистических методов проверки гипотез.

Невероятностные методы обработки данных являются поисковыми, их можно использовать лишь при предварительном анализе данных, так как они не дают возможности оценить точность и надежность выводов, полученных на основании ограниченного статистического материала.

Вероятностные и статистические методы применимы всюду, где удается построить и обосновать вероятностную модель явления или процесса. Их применение обязательно, когда сделанные на основе выборочных данных выводы переносятся на всю совокупность (например, с выборки на всю партию продукции).

В конкретных областях применений используются как вероятностно-статистические методы широкого применения, так и специфические. Например, в разделе производственного менеджмента, посвященного статистическим методам управления качеством продукции, используют прикладную математическую статистику (включая планирование экспериментов). С помощью ее методов проводится статистический анализ точности и стабильности технологических процессов и статистическая оценка качества. К специфическим методам относятся методы статистического приемочного контроля качества продукции, статистического регулирования технологических процессов, оценки и контроля надежности и др.

Широко применяются такие прикладные вероятностно-статистические дисциплины, как теория надежности и теория массового обслуживания. Содержание первой из них ясно из названия, вторая занимается изучением систем типа телефонной станции, на которую в случайные моменты времени поступают вызовы - требования абонентов, набирающих номера на своих телефонных аппаратах. Длительность обслуживания этих требований, т.е. длительность разговоров, также моделируется случайными величинами. Большой вклад в развитие этих дисциплин внесли член-корреспондент АН СССР А.Я. Хинчин (1894-1959), академик АН УССР Б.В.Гнеденко (1912-1995) и другие отечественные ученые.

Коротко об истории математической статистики. Математическая статистика как наука начинается с работ знаменитого немецкого математика Карла Фридриха Гаусса (1777-1855), который на основе теории вероятностей исследовал и обосновал метод наименьших квадратов, созданный им в 1795 г. и примененный для обработки астрономических данных (с целью уточнения орбиты малой планеты Церера). Его именем часто называют одно из наиболее популярных распределений вероятностей – нормальное, а в теории случайных процессов основной объект изучения – гауссовские процессы.

В конце XIX в. – начале ХХ в. крупный вклад в математическую статистику внесли английские исследователи, прежде всего К.Пирсон (1857-1936) и Р.А.Фишер (1890-1962). В частности, Пирсон разработал критерий «хи-квадрат» проверки статистических гипотез, а Фишер – дисперсионный анализ, теорию планирования эксперимента, метод максимального правдоподобия оценки параметров.

В 30-е годы ХХ в. поляк Ежи Нейман (1894-1977) и англичанин Э.Пирсон развили общую теорию проверки статистических гипотез, а советские математики академик А.Н. Колмогоров (1903-1987) и член-корреспондент АН СССР Н.В.Смирнов (1900-1966) заложили основы непараметрической статистики. В сороковые годы ХХ в. румын А. Вальд (1902-1950) построил теорию последовательного статистического анализа.

Математическая статистика бурно развивается и в настоящее время. Так, за последние 40 лет можно выделить четыре принципиально новых направления исследований :

Разработка и внедрение математических методов планирования экспериментов;

Развитие статистики объектов нечисловой природы как самостоятельного направления в прикладной математической статистике;

Развитие статистических методов, устойчивых по отношению к малым отклонениям от используемой вероятностной модели;

Широкое развертывание работ по созданию компьютерных пакетов программ, предназначенных для проведения статистического анализа данных.

Вероятностно-статистические методы и оптимизация. Идея оптимизации пронизывает современную прикладную математическую статистику и иные статистические методы. А именно, методы планирования экспериментов, статистического приемочного контроля, статистического регулирования технологических процессов и др. С другой стороны, оптимизационные постановки в теории принятия решений, например, прикладная теория оптимизации качества продукции и требований стандартов, предусматривают широкое использование вероятностно-статистических методов, прежде всего прикладной математической статистики.

В производственном менеджменте, в частности, при оптимизации качества продукции и требований стандартов особенно важно применять статистические методы на начальном этапе жизненного цикла продукции, т.е. на этапе научно-исследовательской подготовки опытно-конструкторских разработок (разработка перспективных требований к продукции, аванпроекта, технического задания на опытно-конструкторскую разработку). Это объясняется ограниченностью информации, доступной на начальном этапе жизненного цикла продукции, и необходимостью прогнозирования технических возможностей и экономической ситуации на будущее. Статистические методы должны применяться на всех этапах решения задачи оптимизации – при шкалировании переменных, разработке математических моделей функционирования изделий и систем, проведении технических и экономических экспериментов и т.д.

В задачах оптимизации, в том числе оптимизации качества продукции и требований стандартов, используют все области статистики. А именно, статистику случайных величин, многомерный статистический анализ, статистику случайных процессов и временных рядов, статистику объектов нечисловой природы. Выбор статистического метода для анализа конкретных данных целесообразно проводить согласно рекомендациям .

При проведении психолого-педагогических исследований важная роль отводится математическим методам моделирования процессов и обработки экспериментальных данных. К таким методам следует отнести, прежде всего, так называемые, вероятностно-статистические методы исследования. Это связано с тем, что на поведение как отдельного человека в процессе его деятельности, так и человека в коллективе существенное влияние оказывает множество случайных факторов. Случайность не позволяет описывать явления в рамках детерминированных моделей, т. к. проявляется, как недостаточная регулярность в массовых явлениях и, следовательно, не дает возможность с достоверностью предсказывать наступление определенных событий. Однако при изучении таких явлений обнаруживаются определенные закономерности. Нерегулярность, свойственная случайным событиям, при большом количестве испытаний, как правило, компенсируется появлением статистической закономерности, стабилизацией частот наступлений случайных событий. Следовательно, данные случайные события имеют определенную вероятность. Существуют два принципиально различающихся вероятностно-статистических метода психолого-педагогических исследований: классический и неклассический. Проведем сравнительный анализ этих методов.

Классический вероятностно-статистический метод. В основе классического вероятностно-статистического метода исследования лежат теория вероятностей и математическая статистика. Данный метод применяется при изучении массовых явлений случайного характера, он включает несколько этапов, основные из которых следующие.

1. Построение вероятностной модели реальности, исходя из анализа статистических данных (определение закона распределения случайной величины). Естественно, что закономерности массовых случайных явлений выражаются тем более отчетливо, чем больше объем статистического материала. Выборочные данные, полученные при проведении эксперимента, всегда ограничены и носят, строго говоря, случайный характер. В связи с этим важная роль отводится обобщению закономерностей, полученных на выборке, и распространению их на всю генеральную совокупность объектов. С целью решения этой задачи принимается определенная гипотеза о характере статистической закономерности, которая проявляется в исследуемом явлении, например, гипотеза о том, что исследуемое явление подчиняется закону нормального распределения. Такая гипотеза носит название нулевой гипотезы, которая может оказаться ошибочной, поэтому наряду с нулевой гипотезой еще выдвигается и альтернативная или конкурирующая гипотеза. Проверка того насколько полученные экспериментальные данные соответствуют той или иной статистической гипотезе осуществляется с помощью так называемых непараметрических статистических критериев или критериев согласия. В настоящее время широко используются критерии согласия Колмогорова, Смирнова, омега-квадрат и др. . Основная идея этих критериев состоит в измерении расстояния между функцией эмпирического распределения и функцией полностью известного теоретического распределения. Методология проверки статистической гипотезы строго разработана и изложена в большом количестве работ по математической статистике.

2. Проведение необходимых расчетов математическими средствами в рамках вероятностной модели. В соответствии с установленной вероятностной моделью явления проводятся вычисления характеристических параметров, например, таких как математическое ожидание или среднее значение, дисперсия, стандартное отклонение, мода, медиана, показатель асимметрии и др.

3. Интерпретация вероятностно-статистических выводов применительно к реальной ситуации.

В настоящее время классический вероятностно-статистический метод хорошо разработан и широко используется при проведении исследований в различных областях естественных, технических и общественных наук. Подробное описание сути данного метода и его применения к решению конкретных задач можно найти в большом количестве литературных источников, например в .

Неклассический вероятностно-статистический метод. Неклассический вероятно-статистический метод исследований отличается от классического тем, что он применяется не только к массовым, но и к отдельным событиям, имеющим принципиально случайный характер. Данный метод может быть эффективно использован при анализе поведения индивида в процессе выполнения той или иной деятельности, например, в процессе усвоения знаний учащимся . Особенности неклассического вероятностно-статистического метода психолого-педагогических исследований рассмотрим на примере поведения учащихся в процессе усвоения знаний.

Впервые вероятностно-статистическая модель поведения учащихся в процессе усвоения знаний была предложена в работе . Дальнейшее развитие этой модели было сделано в работе . Учение как вид деятельности, цель которого приобретение человеком знаний, умений и навыков, зависит от уровня развития сознания учащегося. В структуру сознания входят такие познавательные процессы, как ощущение, восприятие, память, мышление, воображение. Анализ этих процессов показывает, что им присущи элементы случайности, обусловленные случайным характером психического и соматического состояний индивида, а также физиологическим, психологическим и информационным шумами при работе головного мозга. Последнее привело при описании процессов мышления к отказу от использования модели детерминистской динамической системы в пользу модели случайной динамической системы . Это означает, что детерминизм сознания реализуется через случайность. Отсюда можно заключить, что знания человека, являющиеся фактически продуктом сознания, также имеют случайный характер, и, следовательно, для описания поведения каждого отдельного учащегося в процессе усвоения знаний может быть использован вероятностно-статистический метод.

В соответствии с этим методом учащийся идентифицируется функцией распределения (плотностью вероятности), определяющей вероятность нахождения его в единичной области информационного пространства. В процессе обучения функция распределения, с которой идентифицируется учащийся, эволюционируя, движется в информационном пространстве. Каждый учащийся обладает индивидуальными свойствами и допускается независимая локализация (пространственная и кинематическая) индивидов друг относительно друга.

На основе закона сохранения вероятности записывается система дифференциальных уравнений, представляющих собой уравнения непрерывности, которые связывают изменение плотности вероятности за единицу времени в фазовом пространстве (пространстве координат, скоростей и ускорений различных порядков) с дивергенцией потока плотности вероятности в рассматриваемом фазовом пространстве. В проведен анализ аналитических решений ряда уравнений непрерывности (функций распределения), характеризующих поведение отдельных учащихся в процессе обучения.

При проведении экспериментальных исследований поведения учащихся в процессе усвоения знаний используется вероятностно-статистическое шкалирование , в соответствии с которым шкала измерений представляет собой упорядоченную систему , где A - некоторое вполне упорядоченное множество объектов (индивидов), обладающих интересующими нас признаками (эмпирическая система с отношениями); Ly - функциональное пространство (пространство функций распределения) с отношениями; F - операция гомоморфного отображения A в подсистему Ly; G - группа допустимых преобразований; f - операция отображения функций распределения из подсистемы Ly на числовые системы с отношениями n-мерного пространства M. Вероятностно-статистическое шкалирование применяется для нахождения и обработки экспериментальных функций распределения и включает три этапа.

1. Нахождение экспериментальных функций распределения по результатам контрольного мероприятия, например, экзамена. Типичный вид индивидуальных функций распределения, найденных при использовании двадцатибалльной шкалы, представлен на рис. 1. Методика нахождения таких функций описана в .

2. Отображение функций распределения на числовое пространство. С этой целью проводится расчет моментов индивидуальных функций распределения. На практике, как правило, достаточно ограничиться определением моментов первого порядка (математического ожидания), второго порядка (дисперсии) и третьего порядка, характеризующего асимметрию функции распределения.

3. Ранжирование учащихся по уровню знаний на основе сравнения моментов различных порядков их индивидуальных функций распределения.

Рис. 1. Типичный вид индивидуальных функций распределения студентов, получивших на экзамене по общей физике различные оценки : 1 - традиционная оценка «2»; 2 - традиционная оценка «3»; 3 - традиционная оценка «4»; 4 - традиционная оценка «5»

На основе аддитивности индивидуальных функций распределения в найдены экспериментальные функции распределения для потока студентов (рис. 2).


Рис. 2. Эволюция полной функции распределения потока студентов, аппроксимированной гладкими линиями : 1 - после первого курса; 2 - после второго курса; 3 - после третьего курса; 4 - после четвертого курса; 5 - после пятого курса

Анализ данных, представленных на рис. 2, показывает, что по мере продвижения в информационном пространстве функции распределения расплываются. Это происходит вследствие того, что математические ожидания функций распределения индивидов движутся с разными скоростями, а сами функции расплываются из-за дисперсии. Дальнейший анализ данных функций распределения может быть проведен в рамках классического вероятностно-статистического метода.

Обсуждение результатов. Анализ классического и неклассического вероятностно-статистических методов психолого-педагогических исследований показал, что между ними имеется существенное отличие. Оно, как это можно понять из сказанного выше, заключается в том, что классический метод применим лишь к анализу массовых событий, а неклассический метод применим как к анализу массовых, так и одиночных событий. В связи с этим классический метод может быть условно назван массовым вероятностно-статистическим методом (МВСМ), а неклассический метод - индивидуальным вероятностно-статистическим методом (ИВСМ). В 4] показано, что ни один из классических методов оценки знаний учащихся в рамках вероятностно-статистической модели индивида не может быть применен для этих целей.

Отличительные особенности методов МВСМ и ИВСМ рассмотрим на примере измерения полноты знаний учащихся. С этой целью проведем мысленный эксперимент. Предположим, что имеется большое количество абсолютно одинаковых по психическим и физическим характеристикам учащихся, имеющих одинаковую предысторию, и пусть они, не взаимодействуя друг с другом, одновременно участвуют в одном и том же познавательном процессе, испытывая абсолютно одинаковое строго детерминированное воздействие. Тогда в соответствии с классическими представлениями об объектах измерения все учащиеся должны были бы получить одинаковые оценки полноты знаний с любой заданной точностью измерений. Однако в реальности при достаточно большой точности измерений оценки полноты знаний учащихся будут различаться . Объяснить такой результат измерений в рамках МВСМ не представляется возможным, т. к. исходно предполагается, что воздействие на абсолютно одинаковых невзаимодействующих между собой учащихся имеет строго детерминированный характер. Классический вероятностно-статистический метод не учитывает того, что детерминизм процесса познания реализуется через случайность, внутренне присущую каждому познающему окружающий мир индивиду.

Случайный характер поведения учащегося в процессе усвоения знаний учитывает ИВСМ. Применение индивидуального вероятностно-статистического метода для анализа поведения рассматриваемого идеализированного коллектива учащихся показало бы, что указать точно положение каждого учащегося в информационном пространстве нельзя, можно лишь говорить вероятности нахождения его в той или иной области информационного пространства. Фактически каждый учащийся идентифицируется индивидуальной функцией распределения, причем ее параметры, такие как математическое ожидание, дисперсия и др., индивидуальны для каждого учащегося. Это означает, что индивидуальные функции распределения будут находиться в разных областях информационного пространства. Причина такого поведения учащихся заключается в случайном характере процесса познания.

Однако в ряде случаев результаты исследований, добытые в рамках МВСМ, могут быть интерпретированы и в рамках ИВСМ. Предположим, что преподаватель при оценке знаний учащегося использует пятибалльную шкалу измерений. В этом случае погрешность в оценке знаний составляет ±0,5 балла. Следовательно, когда учащемуся выставляется оценка, например, 4 балла, это означает, что его знания находятся в промежутке от 3,5 баллов до 4,5 баллов. Фактически положение индивида в информационном пространстве в данном случае определяется прямоугольной функцией распределения, ширина которой равна погрешности измерения ±0,5 балла, а оценка является математическим ожиданием. Эта погрешность настолько большая, что не позволяет наблюдать истинный вид функции распределения. Однако, несмотря на столь грубую аппроксимацию функции распределения, изучение ее эволюции позволяет получить важную информацию, как о поведении отдельного индивида, так и коллектива учащихся в целом .

На результат измерения полноты знаний учащегося непосредственно или опосредовано влияет сознание преподавателя (измерителя), которому также свойственна случайность. В процессе педагогических измерений фактически имеет место взаимодействие двух случайных динамических систем, идентифицирующих поведение учащегося и преподавателя в данном процессе. В рассмотрено взаимодействие студенческой подсистемы с профессорско-преподавательской подсистемой и показано, что скорость движения математического ожидания индивидуальных функций распределения студентов в информационном пространстве пропорциональна функции воздействия профессорско-преподавательского коллектива и обратно пропорциональна функции инертности, характеризующей неподатливость изменению положения математического ожидания в пространстве (аналог закона Аристотеля в механике).

В настоящее время, несмотря на значительные достижения в разработке теоретических и практических основ измерений при проведении психолого-педагогических исследований, проблема измерений в целом еще далека от решения. Это связано, прежде всего, с тем, что до сих пор не имеется достаточной информации о влиянии сознания на процесс измерения. Аналогичная ситуация сложилась и при решении проблемы измерений в квантовой механике. Так, в работе при рассмотрении концептуальных проблем квантовой теории измерений говорится о том, что разрешить некоторые парадоксы измерений в квантовой механике «… вряд ли возможно без непосредственного включения сознания наблюдателя в теоретическое описание квантового измерения». Далее говорится, что «… непротиворечивым является предположение о том, что сознание может сделать вероятным некоторое событие, даже если по законам физики (квантовой механики) вероятность этого события мала. Сделаем важное уточнение формулировки: сознание данного наблюдателя может сделать вероятным, что он увидит это событие».

Вероятностно-статистические методы моделирования экономических систем


Введение


Под задачей идентификации закона распределения наблюдаемой случайной величины (структурно-параметрической идентификации), как правило, понимают задачу выбора такой параметрической модели закона распределения вероятностей, которая наилучшим образом соответствует результатам экспериментальных наблюдений. Случайные ошибки средств измерений не так уж часто подчиняются нормальному закону, точнее, не так часто хорошо описываются моделью нормального закона. В основе измерительных приборов и систем лежат различные физические принципы, различные методы измерений и различные преобразования измерительных сигналов. Погрешности измерений как величины являются следствием влияния множества факторов, случайного и неслучайного характера, действующих постоянно или эпизодически. Поэтому понятно, что только при выполнении определенных предпосылок (теоретических и технических) погрешности измерений достаточно хорошо описываются моделью нормального закона.

Вообще говоря, следует понимать, что истинный закон распределения (если он, конечно, существует), описывающий погрешности конкретной измерительной системы, остается (останется) неизвестным, не смотря на все наши попытки его идентифицировать. На основании данных измерений и теоретических соображений мы можем только подобрать вероятностную модель, которая в некотором смысле наилучшим образом приближает этот истинный закон. Если построенная модель адекватна, то есть применяемые критерии не дают оснований для ее отклонения, то на основе данной модели можно вычислить все интересующие нас вероятностные характеристики случайной составляющей погрешности измерительного средства, которые будут отличаться от истинных значений только за счет не исключенной систематической (ненаблюдаемой или нерегистрируемой) составляющей погрешности измерений. Ее малость и характеризует правильность измерений. Множество возможных законов распределения вероятностей, которые можно использовать для описания наблюдаемых случайных величин, не ограничено. Бессмысленно ставить целью задачи идентификации нахождение истинного закона распределения наблюдаемой величины. Мы можем лишь решать задачу выбора наилучшей модели из некоторого множества. Например, из того множества параметрических законов и семейств распределений, которые используются в приложениях, и упоминание о которых можно найти в литературных источниках.

Классический подход к структурно-параметрической идентификации закона распределения. Под классическим подходом будем понимать алгоритм выбора закона распределения, целиком базирующийся на аппарате математической статистики.


1. Элементарные понятия о случайных событиях, величинах и функциях


Мы уже видели, что для многих экспериментов нет никаких различий в подсчёте вероятностей событий, тогда как элементарные исходы в этих экспериментах очень различаются. Но нас и должны интересовать именно вероятности событий, а не структура пространства элементарных исходов. Поэтому пора во всех таких «похожих» экспериментах вместо самых разных элементарных исходов использовать, например, числа. Иначе говоря, каждому элементарному исходу поставить в соответствие некоторое вещественное число, и работать только с числами.

Пусть задано вероятностное пространство .

Определение 26. Функция называется случайной величиной , если для любого борелевского множества множество является событием, т.е. принадлежит - алгебре .

Множество , состоящее из тех элементарных исходов , для которых принадлежит , называется полным прообразом множества .

Замечание 9. Вообще, пусть функция действует из множества в множество , и заданы -алгебры и подмножеств и соответственно. Функция называется измеримой , если для любого множества его полный прообраз принадлежит .

Замечание 10.Читатель, не желающий забивать себе голову абстракциями, связанными с -алгебрами событий и с измеримостью, может смело считать, что любое множество элементарных исходов есть событие, и, следовательно, случайная величина есть произвольная функция из в . Неприятностей на практике это не влечёт, так что всё дальнейшее в этом параграфе можно пропустить.

Теперь, избавившись от нелюбопытных читателей, попробуем понять, зачем случайной величине нужна измеримость.

Если задана случайная величина , нам может потребоваться вычислить вероятности вида , , , (и вообще самые разные вероятности попадания в борелевские множества на прямой). Это возможно лишь если множества, стоящие под знаком вероятности, являются событиями - ведь вероятность есть функция, определённая только на -алгебре событий. Требование измеримости равносильно тому, что для любого борелевского множества определена вероятность .

Можно потребовать в определении 26 чего-нибудь другого. Например, чтобы событием было попадание в любой интервал: , или в любой полуинтервал: .

Убедимся, например, что эквивалентны определения 26 и 27:

Определение 27.Функция называется случайной величиной, если для любых вещественных множество принадлежит -алгебре .

Доказательствоэквивалентности определений 26, 27.

Если - случайная величина в смысле определения 26, то она будет случайной величиной и в смысле определения 27, поскольку любой интервал является борелевским множеством.

Докажем, что верно и обратное. Пусть для любого интервала выполнено . Мы должны доказать, что то же самое верно и для любых борелевских множеств.

Соберём в множестве все подмножества вещественной прямой, прообразы которых являются событиями. Множество уже содержит все интервалы . Покажем теперь, что множество является -алгеброй. По определению, тогда и только тогда, когда множество принадлежит .

1. Убедимся, что . Но и, следовательно, .

2. Убедимся, что для любого . Пусть . Тогда , так как - -алгебра.

3. Убедимся, что для любых . Пусть для всех . Но - -алгебра, поэтому

Мы доказали, что - -алгебра и содержит все интервалы на прямой. Но - наименьшая из -алгебр, содержащих все интервалы на прямой. Следовательно, содержит : .

Приведём примеры измеримых и неизмеримых функций.

Пример 25.Подбрасываем кубик. Пусть , и две функции из в заданы так: , . Пока не задана -алгебра , нельзя говорить об измеримости. Функция, измеримая относительно какой-то -алгебры , может не быть таковой для другой .

Если есть множество всех подмножеств , то и являются случайными величинами, поскольку любое множество элементарных исходов принадлежит , в том числе и или . Можно записать соответствие между значениями случайных величин и и вероятностями принимать эти значения в виде «таблицы распределения вероятностей» или, коротко, «таблицы распределения»:

Здесь .


2. Пусть -алгебра событий состоит из четырёх множеств:



т.е. событием является, кроме достоверного и невозможного событий, выпадение чётного или нечётного числа очков. Убедимся, что при такой сравнительно бедной -алгебре ни , ни не являются случайными величинами, поскольку они неизмеримы. Возьмём, скажем, . Видим, что и


2. Числовые характеристики случайных величин


Математическое ожидание. Математическим ожиданием дискретной случайной величины Х, принимающей конечное число значений хi с вероятностями рi, называется сумма:


(6а)


Математическим ожиданием непрерывной случайной величины Х называется интеграл от произведения ее значений х на плотность распределения вероятностей f(x):


(6б)


Несобственный интеграл (6б) предполагается абсолютно сходящимся (в противном случае говорят, что математическое ожидание М (Х) не существует). Математическое ожидание характеризует среднее значение случайной величины Х. Его размерность совпадает с размерностью случайной величины. Свойства математического ожидания:



Дисперсия. Дисперсией случайной величины Х называется число:



Дисперсия является характеристикой рассеяния значений случайной величины Х относительно ее среднего значения М (Х). Размерность дисперсии равна размерности случайной величины в квадрате. Исходя из определений дисперсии (8) и математического ожидания (5) для дискретной случайной величины и (6) для непрерывной случайной величины получим аналогичные выражения для дисперсии:



Здесь m = М (Х).

Свойства дисперсии:


(10)


Среднее квадратичное отклонение:


(11)


Так как размерность среднего квадратичного отклонения та же, что и у случайной величины, оно чаще, чем дисперсия, используется как мера рассеяния.

Моменты распределения. Понятия математического ожидания и дисперсии являются частными случаями более общего понятия для числовых характеристик случайных величин - моментов распределения. Моменты распределения случайной величины вводятся как математические ожидания некоторых простейших функций от случайной величины. Так, моментом порядка k относительно точки х0называется математическое ожидание М (Х - х0) k. Моменты относительно начала координат х = 0 называются начальными моментами и обозначаются:


(12)


Начальный момент первого порядка есть центр распределения рассматриваемой случайной величины:


(13)


Моменты относительно центра распределения х = m называются центральными моментами и обозначаются:


(14)


Из (7) следует, что центральный момент первого порядка всегда равен нулю:


(15)


Центральные моменты не зависят от начала отсчета значений случайной величины, так как при сдвиге на постоянное значение С ее центр распределения сдвигается на то же значение С, а отклонение от центра не меняется:


Х - m = (Х - С) - (m - С).


Теперь очевидно, что дисперсия - это центральный момент второго порядка:


(16)


Асимметрия. Центральный момент третьего порядка:


(17)


служит для оценки асимметрии распределения. Если распределение симметрично относительно точки х = m, то центральный момент третьего порядка будет равен нулю (как и все центральные моменты нечетных порядков). Поэтому, если центральный момент третьего порядка отличен от нуля, то распределение не может быть симметричным. Величину асимметрии оценивают с помощью безразмерного коэффициента асимметрии:


(18)


Знак коэффициента асимметрии (18) указывает на правостороннюю или левостороннюю асимметрию (рис. 2).


Рис. 1. Виды асимметрии распределений


Эксцесс. Центральный момент четвертого порядка:


(19)


служит для оценки так называемого эксцесса, определяющего степень крутости (островершинности) кривой распределения вблизи центра распределения по отношению к кривой нормального распределения. Так как для нормального распределения, то в качестве эксцесса принимается величина:


(20)


На рис. 3 приведены примеры кривых распределения с различными значениями эксцесса. Для нормального распределения Е = 0. Кривые, более островершинные, чем нормальная, имеют положительный эксцесс, более плосковершинные - отрицательный.


Рис. 2. Кривые распределения с различной степенью крутости (эксцессом)


Моменты более высоких порядков в инженерных приложениях математической статистики обычно не применяются.

Мода дискретной случайной величины - это ее наиболее вероятное значение. Модой непрерывной случайной величины называется ее значение, при котором плотность вероятности максимальна (рис. 2). Если кривая распределения имеет один максимум, то распределение называется унимодальным. Если кривая распределения имеет более одного максимума, то распределение называется полимодальным. Иногда встречаются распределения, кривые которых имеют не максимум, а минимум. Такие распределения называются антимодальными. В общем случае мода и математическое ожидание случайной величины не совпадают. В частном случае, для модального, т.е. имеющего моду, симметричного распределения и при условии, что существует математическое ожидание, последнее совпадает с модой и центром симметрии распределения.

Медиана случайной величины Х - это ее значение Ме, для которого имеет место равенство: т.е. равновероятно, что случайная величина Х окажется меньше или больше Ме. Геометрически медиана - это абсцисса точки, в которой площадь под кривой распределения делится пополам. В случае симметричного модального распределения медиана, мода и математическое ожидание совпадают.


. Статистическая оценка законов распределения случайных величин


Генеральной совокупностью - называется совокупность всех подлежащих изучению объектов или возможных результатов всех наблюдений, производимых в одинаковых условиях над одним объектом.

Выборочной совокупностью или выборкой называется совокупность объектов или результатов наблюдения над объектом, отобранных случайным образом из генеральной совокупности.

Объемом выборки называется число объектов или наблюдений в выборке.

Конкретные значения выборки называются наблюдаемыми значениями случайной величины Х. Наблюдаемые значения заносятся в протокол. Протокол представляет собой таблицу. Составленный протокол является первичной формой записи обработки полученного материала. Для получения достоверных, надежных выводов выборка должна быть достаточно представительной по объему. Большая выборка - это неупорядоченное множество чисел. Для исследования выборку приводят к наглядному упорядоченному виду. Для этого в протоколе находят наибольшее и наименьшее значения случайной величины. Выборка, отсортированная по возрастанию, приведена в таблице 1.

Таблица 1. Протокол

8,66-5,49-4,11-3,48-2,9-2,32-1,82-1,09-0,440,64-8,31-4,71-3,92-3,41-2,85-2,31-1,82-1,01-0,430,71-8,23-4,68-3,85-3,33-2,83-2,29-1,8-0,99-0,430,73-7,67-4,6-3,85-3,25-2,77-2,27-1,77-0,95-0,310,99-6,64-4,43-3,81-3,08-2,72-2,25-1,73-0,89-0,31,03-6,6-4,38-3,8-3,07-2,67-2,19-1,38-0,70,041,05-6,22-4,38-3,77-3,01-2,6-2,15-1,32-0,560,081,13-5,87-4,25-3,73-3,01-2,49-2,09-1,3-0,510,151,76-5,74-4,18-3,59-2,99-2,37-2,01-1,28-0,490,262,95-5,68-4,14-3,49-2,98-2,33-1,91-1,24-0,480,534,42

Размахом выборки называется разность между наибольшим и наименьшим значением случайной величины Х:

Размах выборки разбивают на k интервалов - разрядов. Число разрядов устанавливают в зависимости от величины размаха выборки от 8 до 25, в этой курсовой работе примем k = 10.

Тогда длина интервала будет равна:

В протоколе подсчитаем число наблюдаемых значений, попавших в каждый интервал, обозначим их m1, m2,…, m10. .

Назовем mi частотой попадания случайной величины в i интервал. Если какое-либо наблюдаемое значение случайной величины совпадает с концом интервала, то это значение случайной величины по договоренности относят в один из интервалов.

После того как определили частоты mi, определим частости случайной величины, т.е. найдем отношение частот mi к общему числу наблюдаемых значений n.

Частость, условие полноты -

Найдем середину каждого интервала: .

Составим таблицу 2

Таблица значений границ интервалов и соответствующих частостей , где i = 1, 2, 3, …, k, называется статистическим рядом. Графическим изображением статистического ряда называется гистограмма. Она строится следующим образом: по оси абсцисс откладывают интервалы и на каждом таком интервале, как на основании, строится прямоугольник, площадь которого равна соответствующей частости.

, - высота прямоугольника, .


Таблица 2

Номер интервалаЛевая граница интервалаПравая граница интервалаИнтервалСередина интервалаЧастота интервалаЧастость интервалаВысота прямо-угольника1-8,66-7,352(-8,66; -7,352)-8,00640,040,03062-7,352-6,044(-7,352; -6,044)-6,69830,030,02293-6,044-4,736(-6,044; -4,736)-5,3940,040,03064-4,736-3,428(-4,736; -3,428)-4,082200,20,15295-3,428-2,12(-3,428; -2,12)-2,774260,260,19886-2,12-0,812(-2,12; -0,812)-1,466180,180,13767-0,8120,496(-0,812; 0,496)-0,158140,140,107080,4961,804(0,496; 1,804)1,1590,090,068891,8043,112(1,804; 3,112)2,45810,010,0076103,1124,42(3,112; 4,42)3,76610,010,0076Сумма1001

Рисунок 3


Статистической функцией распределения называется частость случайной величины, не превосходящая заданного значения Х:

Для дискретной случайной величины Х статистическая функция распределения находится по формуле:

Запишем статистическую функцию распределения в развернутом виде:

где - это середина интервала i, а - это соответствующие частости, где i=1, 2,…, k.

График статистической функции распределения есть ступенчатая линия, точками разрыва которой являются середины интервалов, а конечные скачки равны соответствующим частотам.


Рисунок 3


Вычисление числовых характеристик статистического ряда

Статистическое математическое ожидание,

Статистическая дисперсия,

Статистическое среднеквадратическое отклонение.

Статистическим математическим ожиданием или статистическим средним называется среднеарифметическое наблюдаемых значений случайной величины Х.

Статистической дисперсией называется среднеарифметическое значение величиныили

При большом объеме выборки вычисления по формулам и приводят к громоздким выкладкам. Для упрощения расчетов используют статистический ряд с границами и частостями , где i = 1, 2, 3, …, k, находят середины интервалов , а затем все элементы выборки, которые попали в интервал, заменяют единственным значением, тогда таких значений будетв каждом интервале .

где - среднее значение соответствующего интервала; - частость интервала

Таблица 4. Числовые характеристики

Частость PiXiPi(Xi-m)^2(Xi-m)^2*Pi1-8,0060,04-0,320231,486911,25952-6,6980,03-0,200918,518560,55563-5,390,04-0,21568,971940,35894-4,0820,20-0,81642,847050,56945-2,7740,26-0,72120,143880,03746-1,4660,18-0,26390,862450,15527-0,1580,14-0,02215,002740,700481,150,090,103512,564761,130892,4580,010,024623,548500,2355103,7660,010,037737,953980,3795Статистическое математическое ожидание-2,3947Статистическая дисперсия5,3822Статистическое среднее квадратическое отклонение2,3200

Определяет положение центра группировки наблюдаемых значений случайной величины.

, характеризуют рассеяние наблюдаемых значений случайной величины вокруг

Во всяком статистическом распределении неизбежно присутствуют элементы случайности. Однако при очень большом числе наблюдений эти случайности сглаживаются, и случайные явления обнаруживают присущую ему закономерность.

При обработке статистического материала приходится решать вопрос о том, как подобрать для данного статистического ряда теоретическую кривую. Эта теоретическая кривая распределения должна выражать существенные черты статистического распределения - эта задача называется задачей сглаживания или выравнивания статистического ряда.

Иногда общий вид распределения случайной величины Х вытекает из самой природы этой случайной величины.

Пусть случайная величина Х - это результат измерения некоторой физической величины прибора.

Х = точное значение физической величины + ошибка прибора.

Случайная ошибка прибора при измерении имеет суммарную природу и распределена по нормальному закону. Следовательно такое же распределение имеет случайная величина Х, т.е. нормальное распределение с плотностью вероятности:


Где , , .


Параметры и определяются так, чтобы числовые характеристики теоретического распределения были равны соответствующим числовым характеристикам статистического распределения. При нормальном распределении полагают, что ,,, тогда функция нормального распределения примет вид:

Таблица 5. Выравнивающая кривая

Номер интервалаСередина интервала XiТабулированная функцияНормальная кривая 1-8,0060-2,41870,02140,00922-6,6980-1,85490,07140,03083-5,3900-1,29110,17340,07474-4,0820-0,72730,30620,13205-2,7740-0,16350,39360,1697M-2,394700,39890,17206-1,46600,40030,36820,15877-0,15800,96410,25070,108081,15001,52790,12420,053592,45802,09170,04480,0193103,76602,65550,01170,0051

Теоретическую нормальную кривую строим по точкам на одном графике с гистограммой статистического ряда (Ошибка! Источник ссылки не найден).


Рисунок 6


Выравнивание статистической функции распределения

Статистическую функцию распределения выравниваем функцией распределения нормального закона:



где,, - функция Лапласа.


Таблица 7. Функция распределения

Номер интервалаСередина интервала XiФункция Лапласа Функция распределения1-8,0060-2,4187-0,49220,00782-6,6980-1,8549-0,46820,03183-5,3900-1,2911-0,40170,09834-4,0820-0,7273-0,26650,23355-2,7740-0,1635-0,06490,4351m-2,3947000,50006-1,46600,40030,15550,65557-0,15800,96410,33250,832581,15001,52790,43670,936792,45802,09170,48180,9818103,76602,65550,49600,9960

Строим график теоретической функции распределения по точкам / вместе с графиком статистической функции распределения.


Рисунок 6


Пусть изучается случайная величина Х с математическим ожиданием и дисперсией, оба параметра неизвестны.

Пусть х1, х2, х3, …, хn - выборка, полученная в результате проведения n независимых наблюдений случайной величины Х. Чтобы подчеркнуть случайный характер величин х1, х2, х3, …, хn перепишем их в виде:

Х1, Х2, Х3, …, Хn, где Хi - значение случайной величины Х в i-ом опыте.

Требуется на основании этих опытных данных оценить математическое ожидание и дисперсию случайной величины. Такие оценки называются точечными, в качестве оценки m и D можно принять статистическое математическое ожидание и статистическую дисперсию , где



До проведения опыта выборка Х1, Х2, Х3, …, Хn есть совокупность независимых случайных величин, которые имеют математическое ожидание и дисперсию, а значит распределение вероятности такие же как и сама случайная величина Х. Таким образом:


Где i = 1, 2, 3, …, n.


Исходя из этого, найдем математическое ожидание и дисперсию случайной величины (пользуясь свойствами математического ожидания).

Таким образом математическое ожидание статистического среднего равно точному значению математического ожидания m измеряемой величины, а дисперсия статистического среднего в n раз меньше дисперсии отдельных результатов измерений.


при


Это значит, что при большом объеме выборки N статистическое средние является величиной почти неслучайной, оно лишь незначительно отклоняется от точного значения случайной величины m. Этот закон называется законом больших чисел Чебышева.

Точечные оценки неизвестных значений математического ожидания и дисперсии имеют большое значение на первоначальном этапе обработки статических данных. Их недостаток в том, что неизвестно с кокой точностью они дают оцениваемый параметр.

Пусть по данной выборке Х1, Х2, Х3, …, Хn получены точные статистические оценки и, тогда числовые характеристики случайной величины Х будут приближенно равны . Для выборки небольшого объема вопрос поточности оценки существенен, т.к. между m и, D и будут недостаточно большие отклонения. Кроме того при решении практических задач требуется не только найти приближенные значения m и D, но и оценить их точность и надежность. Пусть , т.е. является точечной оценкой для m. Очевидно, чтотем точнее определяет m, чем меньше модуль разности . Пусть , где ?>0, тогда, чем меньше ?, тем точнее оценка m. Таким образом, ?>0 характеризует точность оценки параметра. Однако статистические методы не позволяют категорически утверждать, что оценка истинного значения m удовлетворяет, можно лишь говорить о вероятности ?, с которой это неравенство выполняется:

Таким образом, ? - это доверительная вероятность или надежность оценки , значение ? выбираются заранее в зависимости от решаемой задачи. Надежность ? принято выбирать 0.9; 0.95; 0.99; 0.999. События с такой вероятностью являются практически достоверными. По заданной доверительной вероятности можно найти число ?>0 из .

Тогда получим интервал, который накрывает с вероятностью ? истинное значение математического ожидания m, длина этого интервала равна 2?. Этот интервал называется доверительным интервалом . А такой способ оценки неизвестного параметра m - интервальным .



Пусть дана выборка Х1, Х2, Х3, …, Хn, и пусть по этой выборке найдено ,,.

Требуется найти доверительный интервал для математического ожидания m с доверительной вероятностью ?. Величина есть величина случайная с математическим ожиданием,.

Случайная величина имеет суммарную природу, при большом объеме выборки она распределена по закону близкому к нормальному. Тогда вероятность попадания случайной величины в интервал будет равна:


Где


Где - функция Лапласа.

Из формулы (3) и таблиц функции Лапласа находим число ?>0 и записываем доверительный интервал для точного значения случайной величины Х с надежностью ?.

В этой курсовой работе значение ? заменим, и тогда формула (3) примет вид:

Найдем доверительный интервал , в котором находится математическое ожидание. При ? = 0.99, n = 100, ,.

по таблицам Лапласа находим:

Отсюда ? = 0,5986.

Доверительный интервал, в котором с вероятностью 99% находится точное значение математического ожидания.


Заключение

случайный величина распределение экономический

Решение задач структурно-параметрической идентификации при ограниченных объемах выборок, которыми, как правило, обладают метрологи, обостряет проблему. В этом случае еще более важными оказываются корректность применения статистических методов анализа, использование оценок, обладающих наилучшими статистическими свойствами, и критериев, обладающих наибольшей мощностью.

При решении задач идентификации предпочтительнее опираться на классический подход. При идентификации рекомендуется рассматривать более широкое множество законов распределения, в том числе модели в виде смесей законов. В этом случае для любого эмпирического распределения мы всегда сможем построить адекватную, статистически существенно более обоснованную математическую модель.

Следует ориентироваться на использование и разработку программных систем, обеспечивающих решение задач структурно-параметрической идентификации законов распределений при любой форме регистрируемых наблюдений (измерений), включающих современные методы статистического анализа, ориентироваться на широкое, но корректное использование в исследованиях методов компьютерного моделирования. Мы уже видели, что для многих экспериментов нет никаких различий в подсчёте вероятностей событий, тогда как элементарные исходы в этих экспериментах очень различаются. Но нас и должны интересовать именно вероятности событий, а не структура пространства элементарных исходов. Поэтому пора во всех таких «похожих» экспериментах вместо самых разных элементарных исходов использовать, например, числа. Иначе говоря, каждому элементарному исходу поставить в соответствие некоторое вещественное число, и работать только с числами.

Рассматриваемая группа методов является наиболее важной в социологических исследованиях, данные методы применяются практически в каждом социологическом исследовании, которое можно считать действительно научным. Они направлены в основном на выявление в эмпирической информации статистических закономерностей, т.е. закономерностей, выполняющихся "в среднем". Собственно, социология и занимается изучением "среднего человека". Кроме того, еще одна важная цель применения вероятностных и статистических методов в социологии – оценка надежности выборки. Насколько велика уверенность, что выборка дает более-менее точные результаты и какова погрешность статистических выводов?

Главный объект изучения при применении вероятностных и статистических методов – случайные величины . Принятие случайной величиной некоторого значения является случайным событием – событием, которое при осуществлении данных условий может как произойти, так и не произойти. Например, если социолог проводит опросы в сфере политических предпочтений на улице города, то событие "очередной респондент оказался сторонником партии власти" является случайным, если ничего в респонденте заранее не выдавало его политических предпочтений. Если же социолог опросил респондента у здания Областной Думы, то событие уже не случайное. Случайное событие характеризуется вероятностью его наступления. В отличие от классических задач на игральные кости и карточные комбинации, изучаемых в рамках курса теории вероятностей, в социологических исследованиях вычислить вероятность не так просто.

Важнейшей базой для эмпирической оценки вероятности является стремление частоты к вероятности , если под частотой понимать отношение, сколько раз произошло событие к тому, сколько раз оно теоретически могло бы произойти. Например, если среди 500 случайно отобранных на улицах города респондентов 220 оказались сторонниками партии власти, то частота появления таких респондентов составляет 0,44. В случае репрезентативной выборки достаточно большого размера мы получим примерную вероятность события или примерную долю людей, обладающих заданным признаком. В нашем примере при удачно подобранной выборке получим, что примерно 44% горожан – сторонники партии власти. Разумеется, поскольку опрошены не все горожане, а некоторые в процессе опроса могли солгать, то имеется некоторая погрешность.

Рассмотрим некоторые задачи, возникающие при статистическом анализе эмпирических данных.

Оценка распределения величины

Если некоторый признак можно выразить количественно (например, политическую активность гражданина как величину, показывающую, сколько раз за последние пять лет он участвовал в выборах различного уровня), то может быть поставлена задача оценить закон распределения этого признака как случайной величины. Другими словами, закон распределения показывает, какие значения величина принимает чаще, а какие реже, и насколько чаще/реже. Чаще всего как в технике и природе, так и в обществе встречается нормальный закон распределения . Его формула и свойства изложены в любом учебнике по статистике, а на рис. 10.1 приведен вид графика – это "колоколообразная" кривая, которая может быть более "вытянута" вверх или более "размазана" по оси значений случайной величины. Суть нормального закона в том, что чаще всего случайная величина принимает значения близ некоторого "центрального" значения, называемого математическим ожиданием , а чем дальше от него, тем реже туда "попадает" величина.

Примеров распределений, которые с небольшой погрешностью можно принять за нормальные, много. Еще в XIX в. бельгийский ученый А. Кетле и англичанин Ф. Гальтон доказали, что распределение частот встречаемости любого демографического или антропометрического показателя (продолжительности жизни, роста, возраста вступления в брак и т.д.) характеризуется "колоколообразным" распределением. Тот же Ф. Гальтон и его последователи доказали, что и психологические осооенности, например, способности, подчиняются нормальному закону .

Рис. 10.1.

Пример

Самый яркий пример нормального распределения в социологии касается социальной активности людей. Согласно закону нормального распределения получается, что социально-активных людей в обществе обычно около 5–7%. Все эти социально- активные люди ходят на митинги, конференции, семинары и т.д. Примерно такое же количество вообще отстраняются от участия в социальной жизни. Основная масса людей (80–90%) вроде бы равнодушна к политике и общественной жизни, однако отслеживает те процессы, которые ей интересны, хотя в целом относится к политике и обществу отстраненно, значительной активности не проявляет. Такие люди пропускают большинство политических событий, но время от времени смотрят новости по телевидению или в Интернете. Также они ходят голосовать на наиболее важные выборы, особенно если им "грозят кнутом" или "поощряют пряником". Члены этих 80–90% с общественно-политической точки зрения почти бесполезны поодиночке, но центрам социологических исследований эти люди вполне интересны, так как их очень много, и их предпочтения нельзя игнорировать. То же касается и околонаучных организаций, выполняющих исследования по заказам политических деятелей или торговых корпораций. И мнение "серой массы" по ключевым вопросам, связанным с прогнозированием поведения многих тысяч и миллионов людей на выборах, а также при острых политических событиях, при расколе обществе и конфликтах разных политических сил, этим центрам не безразлично.

Разумеется, нс все величины распределены по нормальному распределению. Кроме него, наиболее важными в математической статистике являются биномиальное и показательное распределения, распределения Фишера-Снедекора, "Хи-квадрат", Стьюдента .

Оценка связи признаков

Простейший случай – когда требуется просто установить наличие/отсутствие связи. Наиболее популярным в этом вопросе является метод "Хи-квадрат". Данный метод ориентирован на работу с категориальными данными. Например, такими явно выступают пол, семейное положение. Некоторые данные на первый взгляд кажутся числовыми, но могут "превратиться" в категориальные путем разбиения интервала значений на несколько малых интервалов. Например, стаж работы на заводе можно разбить на категории "менее одного года", "от одного до трех лет", "от трех до шести лет" и "более шести лет".

Пусть у параметра X имеется п возможных значений: {х1,..., х г1}, а у параметра Y– т возможных значений: (у1,..., у т}, q ij – наблюдаемая частота появления пары (x i, у j), т.е. количество обнаруженных появлений такой пары. Вычисляем теоретические частоты, т.е. сколько раз должна была появиться каждая пара значений для абсолютно нс связанных между собой величин:

На основе наблюдаемых и теоретических частот вычисляем значение

Также требуется вычислить количество степеней свободы по формуле

где m , n – количество сведенных в таблицу категорий. Кроме того, выбираем уровень значимости . Чем более высокую надежность мы хотим получить, тем ниже уровень значимости следует брать. Как правило, выбирается значение 0,05, которое означает, что мы можем доверять результатам с вероятностью 0,95. Далее в справочных таблицах находим по количеству степеней свободы и уровню значимости критическое значение . Если , то параметры X и Y считаются независимыми. Если , то параметры X и Y – зависимые. Если, то опасно делать вывод о зависимости либо независимости параметров. В последнем случае целесообразно провести дополнительные исследования.

Заметим также, что критерий "Хи-квадрат" с очень высокой уверенностью можно использовать, лишь когда все теоретические частоты не ниже заданного порога, которым обычно считается равным 5. Пусть v – минимальная теоретическая частота. При v > 5 можно уверенно использовать критерий "Хи-квадрат". При v < 5 использование критерия становится нежелательным. При v ≥ 5 вопрос остается открытым, требуется дополнительное исследование о применимости критерия "Хи-квадрат".

Приведем пример применения метода "Хи-квадрат". Пусть, например, в некотором городе проведен опрос среди молодых болельщиков местных футбольных команд и получены следующие результаты (табл. 10.1).

Выдвинем гипотезу о независимости футбольных предпочтений молодежи города N от пола респондента на стандартном уровне значимости 0,05. Вычисляем теоретические частоты (табл. 10.2).

Таблица 10.1

Результаты опроса болельщиков

Таблица 10.2

Теоретические частоты предпочтений

Например, теоретическая частота для юношей-болельщиков Звезды получена как

аналогично – другие теоретические частоты. Далее вычисляем значение "Хи-квадрат":

Определяем количество степеней свободы . Для и уровня значимости 0,05 ищем критическое значение:

Поскольку , причем превосходство существенное, практически наверняка можно говорить, что футбольные предпочтения юношей и девушек города N сильно различаются, за исключением случая нерепрезентативной выборки, например, если исследователь не стал получать выборку из разных районов города, ограничившись опросом респондентов в своем квартале.

Более сложная ситуация – когда нужно количественно оценить силу связи. В этом случае часто применяются методы корреляционного анализа. Данные методы обычно рассматриваются в углубленных курсах математической статистики.

Аппроксимация зависимостей по точечным данным

Пусть имеется набор точек – эмпирических данных (X i, Yi), i = 1, ..., п. Требуется аппроксимировать реальную зависимость параметра у от параметра х, а также выработать правило вычисления значения у, когда х находится между двумя "узлами" Хi.

Существуют два принципиально разных подхода к решению поставленной задачи. Первый заключается в том, что среди функций заданного семейства (например, полиномов) выбирается функция, график которой проходит через имеющиеся точки. Второй подход не "принуждает" график функции проходить через точки. Наиболее популярный в социологии и ряде других наук метод – метод наименьших квадратов – относится ко второй группе методов.

Суть метода наименьших квадратов состоит в следующем. Дано некоторое семейство функций у (х, а 1, ..., а т) с m неопределенными коэффициентами. Требуется подобрать неопределенные коэффициенты за счет решения оптимизационной задачи

Минимальное значение функции d может выступать в качестве меры точности приближения. Если данное значение слишком велико, следует выбрать иной класс функций у либо расширить используемый класс. Например, если класс "полиномы степени не выше 3" не дал приемлемой точности, берем класс "полиномы степени не выше 4" или даже "полиномы степени не выше 5".

Чаще всего метод используют для семейства "полиномы степени не выше N":

Например, при N = 1 это семейство линейных функций, при N = 2 – семейство линейных и квадратичных функций, при N = 3 – семейство линейных, квадратичных и кубических функций. Пусть

Тогда коэффициенты линейной функции (N = 1) ищутся как решение системы линейных уравнений

Коэффициенты функции вида а 0 + а 1х + а 2х 2 (N = 2) ищутся как решение системы

Желающие применить этот метод для произвольного значения N могут сделать это, увидев закономерность, по которой составлены приведенные системы уравнений.

Приведем пример применения метода наименьших квадратов. Пусть численность некоторой политической партии менялась следующим образом:

Можно заметить, что изменения численности партии за разные годы не сильно отличаются, что позволяет нам аппроксимировать зависимость линейной функцией. Чтобы было проще вычислять, вместо переменной х – года – введем переменную t = х – 2010, т.е. первый год учета численности возьмем как "нулевой". Вычисляем М 1; М 2:

Теперь вычисляем М", М*:

Коэффициенты a 0, a 1 функции у = a 0t + а 1 вычисляются как решение системы уравнений

Решая данную систему, например, по правилу Крамера или методом подстановки, получаем: а 0 = 11,12; а 1 = 3,03. Таким образом, получаем приближение

которое позволяет не только оперировать одной функцией вместо набора эмпирических точек, но и вычислять значения функции, выходящие за границы исходных данных, – "предсказывать будущее".

Также заметим, что метод наименьших квадратов можно использовать не только для полиномов, но и для других семейств функций, например, для логарифмов и экспонент:

Степень достоверности модели, построенной на основе метода наименьших квадратов, может быть определена на основе меры "R-квадрат", или коэффициента детерминации. Он вычисляется как

Здесь . Чем ближе R 2 к 1, тем адекватнее модель.

Выявление выбросов

Выбросом ряда данных называется аномальное значение, резко выделяющееся в общей выборке или общем ряде. Например, пусть процент граждан страны, положительно относящихся к некоторому политику, составлял в 2008–2013 гг. соответственно 15, 16, 12, 30, 14 и 12%. Легко заметить, что одно из значений резко отличается от всех остальных. В 2011 г. рейтинг политика почему-то резко превысил обычные значения, державшиеся в пределах 12–16%. Наличие выбросов может быть обусловлено разными причинами:

  • 1) ошибки измерения;
  • 2) необычная природа входных данных (например, когда анализируется средний процент голосов, полученных политиком; это значение на избирательном участке в военной части может существенно отличаться от среднего значения по городу);
  • 3) следствие закона (резко отличающиеся от остальных величины могут быть обусловлены математическим законом – например, в случае нормального распределения в выборку может попасть объект со значением, резко отличным от среднего);
  • 4) катаклизмы (например, в период короткого, но острого политического противостояния уровень политической активности населения может резко измениться, как это произошло в ходе "цветных революций" 2000– 2005 гг. и "арабской весны" 2011 г.);
  • 5) управляющие воздействия (например, если в год накануне исследования политик принял очень популярное решение, то в этот год его рейтинг может оказаться значительно выше, чем в другие годы).

Многие методы анализа данных неустойчивы к выбросам, поэтому для их эффективного применения нужно очистить данные от выбросов. Яркий пример неустойчивого метода – упомянутый выше метод наименьших квадратов. Простейший метод поиска выбросов основан на так называемом межквартильном расстоянии. Определяем диапазон

где Q m значение т- го квартиля. Если некоторый член ряда не попадает в диапазон, то он расценивается как выброс.

Поясним на примере. Смысл квартилей состоит в том, что они делят ряд на четыре равные или примерно равные группы: первый квартиль "отделяет" левую четверть ряда, отсортированного по возрастанию, третий квартиль – правую четверть ряда, второй квартиль проходит посередине. Поясним, как искать Q 1, и Q 3. Пусть в отсортированном по возрастанию числовом ряду п значений. Если п + 1 делится на 4 без остатка, то Q k суть k (п + 1)/4-й член ряда. Например, дан ряд: 1, 2, 5, 6, 7, 8, 10, 11, 13, 15, 20, здесь количество членов п = 11. Тогда (п + 1)/4 = 3, т.е. первый квартиль Q 1 = 5 – третий член ряда; 3(п + 1)/4 = 9, т.е. третий квартиль Q:i= 13 – девятый член ряда.

Немного сложнее случай, когда п + 1 не кратно 4. Например, дан ряд 2, 3, 5, 6, 7, 8, 9, 30, 32, 100, где число членов п = 10. Тогда (п + 1)/4 = 2,75 -

позиция между вторым членом ряда (v2 = 3) и третьим членом ряда (v3= 5). Тогда берем величину 0,75v2 + 0,25v3 = 0,75 3 + 0,25 5 = 3,5 – это и будет Q 1. 3(п + 1)/4 = 8,25 – позиция между восьмым членом ряда (v8= 30) и девятым членом ряда (v9=32). Берем величину 0,25v8 + 0,75v9 = 0,25 30 + + 0,75 32 = 31,5 – это и будет Q 3. Существуют и другие варианты вычисления Q 1 и Q 3, но рекомендуется использовать изложенный здесь вариант.

  • Строго говоря, на практике обычно встречается "приближенно" нормальный закон – поскольку нормальный закон определяется для непрерывной величины на всей действительной оси, многие реальные величины не могут строго удовлетворять свойствам нормально распределенных величин.
  • Наследов А. Д. Математические методы психологического исследования. Анализ и интерпретация данных: учеб, пособие. СПб.: Речь, 2004. С. 49–51.
  • О важнейших распределениях случайных величин см., например: Орлов А. И. Математика случая: вероятность и статистика – основные факты: учеб. пособие. М.: МЗ-Пресс, 2004.
Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png