Вышедший в начале ноября фильм «Интерстеллар» уже с полным правом можно считать главным событием сезона. Причем не только кинематографического. Показанные в картине события - космические полеты через гиперпространство, падения в черные дыры и путешествия во времени - вызвали бурные дискуссии как среди любителей фантастики, так и в околонаучных кругах. Что неудивительно - консультантом фильма выступил знаменитый физик-теоретик Кип Торн. А там, где дело касается современной теоретической физики, сплошь и рядом получается так, что еще вчера бывшее оголтелой фантастикой сегодня оказывается респектабельной научной теорией.
*Осторожно, в тексте есть спойлеры.

Кротовая нора

Основные события фильма начинаются с полета главных героев через развернувшуюся рядом с Сатурном червоточину. Физически она представляет собой тоннель, связывающий две удаленные области пространства-времени. Эти области могут как находиться в одной и той же вселенной, так и связывать разные точки разных вселенных (в рамках концепции мультивселенной). В зависимости от возможности вернуться сквозь нору обратно их подразделяют на проходимые и непроходимые. Непроходимые дыры быстро закрываются и не дают возможности потенциальному путешественнику проделать обратный путь.

Впервые решения уравнений ОТО типа кротовой норы открыл в 1916 году Людвиг Фламм. В 1930-х годах ими заинтересовались Альберт Эйнштейн и Натан Розен, а позднее - Джон Уилер. Однако все эти червоточины были непроходимыми. Только в 1986 году Кип Торн предложил решение с проходимой кротовой норой.

С математической точки зрения кротовая нора представляет собой гипотетический объект, получаемый как особое несингулярное (конечное и имеющее физический смысл) решение уравнений общей теории относительности (ОТО) Альберта Эйнштейна. Обычно червоточины изображают в виде согнутой двумерной поверхности. Попасть с одной ее стороны на другую можно, перемещаясь обычным способом. А можно проделать отверстие и соединить тоннелем обе стороны. В наглядном случае двумерного пространства видно, что это позволяет существенно сократить расстояние.

В двумерии горловины червоточины - отверстия, с которых начинается и заканчивается тоннель, - имеют форму окружности. В трехмерии (как в фильме) горловина кротовой норы похожа на сферу. Образуются такие объекты из двух сингулярностей в разных областях пространства-времени, которые в гиперпространстве (пространстве большей размерности) стягиваются друг к другу с образованием норы. Поскольку нора представляет собой пространственно-временной тоннель, путешествовать по нему можно не только в пространстве, но и во времени.

В «Интерстелларе» нора была проходимой и связывала разные галактики во Вселенной. Но, чтобы вернуться через нее обратно, червоточина должна быть заполнена материей с отрицательной средней плотностью массы, препятствующей закрытию тоннеля. Среди известных науке обладающих такими свойствами элементарных частиц нет. Однако, вероятно, они могут входить в состав темной материи.

Планковская длина равна примерно 1,62х10 -35 метрам, что в 2х10 20 раз меньше «диаметра» протона. Численное значение планковских единиц (длины, массы, времени и других) получается из четырех фундаментальных физических постоянных и очерчивает границу применимости современной физики.

Считается, что подобную кротовую нору можно поймать в квантовой пене, а затем расширить и сделать потенциально пригодной для путешествий через гиперпространство. Такая пена представляет собой флуктуации пространства на планковских масштабах длин, где законы классической ОТО не работают, поскольку необходим учет квантовых эффектов.

Другой способ создания червоточины - протягивание одной области пространства, образующего дыру с сингулярностью, которая в гиперпространстве достает до другой области пространства. Поддерживать проходимость норы в обоих случаях предлагается посредством пропускания через нее материи с отрицательной плотностью массы. Такие проекты не противоречат ОТО.

Экзопланеты и замедление времени

После пролета через червоточину космические путешественники отправляются на экзопланеты , потенциально пригодные для жизни согласно сведениям, полученным от разведывательных миссий. Чтобы планета была хотя бы потенциально пригодна для жизни человека, на ней должны быть похожие на земные устойчивые световые, температурные и гравитационные режимы. Давление в атмосфере должно быть сравнимо с земным, а химический состав - пригодным для жизни хотя бы некоторых земных организмов. Обязательное условие - наличие воды. Все это налагает определенные ограничения на массу и объем планеты, а также расстояние ее до светила и параметры орбиты.

В настоящее время самые благоприятные для человека путешествия во времени созданы на орбите Земли. Чем дольше космонавты и астронавты находятся на борту Международной космической станции, вращающейся со скоростью более семи километров в секунду вокруг планеты, тем медленнее (по сравнению с землянами на поверхности) они стареют. Рекорд путешествий во времени принадлежит Сергею Крикалеву, который за более 803 суток переместился в будущее на примерно 0,02 секунды.

При этом первая из планет (Миллер) оказалась расположена очень близко к сверхмассивной черной дыре Гаргантюа массой 100 миллионов солнц и удаленной от Земли на 10 миллиардов световых лет. Радиус дыры сравним с радиусом орбиты Земли вокруг Солнца, а окружающий ее аккреционный диск простирался бы далеко за орбиту Марса. Из-за сильного гравитационного поля черной дыры один час, проведенный на поверхности планеты Миллер, оказывается равен семи годам на Земле.

Ничего удивительного, утверждает теоретическая физика, это связано с эффектом замедления времени в сильном гравитационном поле черной дыры, в котором находится планета. В специальной теории относительности (СТО) - теории движения тел с околосветовыми скоростями - замедление времени наблюдается в движущихся объектах. А в ОТО, представляющей собой обобщение СТО с учетом гравитации, имеет место эквивалентность инерции и тяготения, дальним следствием которой и является гравитационное замедление времени.

Сверхмассивная черная дыра

После неудачных миссий на экзопланетах героя Мэттью МакКонахи (вместе с роботом) затягивает в сверхмассивную черную дыру Гаргантюа. Причем ни героя МакКонахи, ни его робота при приближении к дыре не разорвало на тысячу маленьких Мэттью и роботиков от чудовищной гравитации. Однако и тут у современной физики есть объяснение.

Эйнштейн в основу ОТО положил локальную эквивалентность полей ускорения и тяготения. Ее просто проиллюстрировать на примере лаборатории внутри падающего лифта. Все предметы внутри такого лифта будут падать вместе с ним с одинаковым ускорением, а их относительные ускорения будут равны нулю. В этом случае ситуацию можно описать в двух системах отсчета. В первой, инерциальной и связанной с Землей, лифт падает под действием гравитации Земли. Во второй, связанной с лифтом (неинерциальной), поля тяготения нет. Если внутри лифта находится наблюдатель, то он не в состоянии определить, в каком поле: ускорения или гравитации, он находится. Получается, что в локальном смысле (когда ускорение свободного падения имеет примерно одинаковые значения в заданной области пространства, то есть гравитационное поле однородно) инерция и гравитация эквивалентны.

Черная дыра представляет собой массивный объект, гравитационное притяжение которого, согласно классической версии ОТО, не позволяет материи покидать ее пределы. Граница дыры с окружающим пространством называется горизонтом событий. Переходя сквозь него, тело, как считается, обратно (по крайней мере, тем же путем) выйти не может.

Есть несколько сценариев образования таких объектов. Основной механизм предполагает гравитационный коллапс некоторых типов звезд или вещества в центрах галактик. Также не исключается их образование еще во времена Большого взрыва и при реакциях элементарных частиц. Существование черных дыр у большинства ученых не вызывает сомнения.

Напряженность гравитационного поля (проще говоря, значение ускорения свободного падения) черной дыры убывает при удалении от нее. Это незаметно на большом расстоянии, где поле черной дыры локально, однородно и существенно на небольших расстояниях: разные части одного и того же протяженного объекта падают в дыру с разными ускорениями, и объект растягивается.

Именно так действует приливная сила черной дыры. Однако тут есть лазейка. Приливная сила прямо пропорциональная массе черной дыры и обратно пропорциональна кубу радиуса горизонта событий. Радиус горизонта событий дыры растет пропорционально ее массе. Следовательно, по порядку величины приливная сила обратно пропорциональна квадрату массы дыры. Для обычных черных дыр получаются огромные значения приливных сил, тогда как для сверхмассивных они не такие уж большие, чем и воспользовались герои «Интерстеллара».

Гиперпространство

Внутри вращающейся черной дыры герой Мэттью МакКонахи (и его робот) обнаружили пятимерную вселенную. И тут им, скажем прямо, повезло - если бы черная дыра не была вращающейся, путешественники продолжили бы движение к ее центру - сингулярности , и в этом случае финал фильма был бы совсем иным.

Математически понятие о физическом гиперпространстве возникло в конце 1910, когда Теодор Калуца вложил четырехмерное пространство ОТО в пятимерное, и тем самым ввел новое измерение. Обычно в теориях с дополнительными измерениями размеры наблюдаемой вселенной вдоль новых измерений настолько малы, что они почти не оказывают влияния на остальные четыре.

ОТО допускает возможность решений уравнений Эйнштейна, например, в форме метрики Керра , аналитические свойства которых позволяют уйти от сингулярности. Такие решения обладают необычными свойствами, в частности из них следует возможность существования внутри черной дыры особых пространственно-временных траекторий, нарушающих обычные причинно-следственные связи.

Можно предположить, что герою МакКонахи (и его роботу) удалось проникнуть в такую черную дыру, избежать ее сингулярности и путешествовать внутри нее по специальной траектории, которая привела его в новую вселенную. В ней геометрия оказалась локально устроенной так, что четыре измерения являются пространственными и одно - временным. Формально это не противоречит ОТО.

И хотя человек, по всей видимости, способен воспринимать только три пространственных и одно временное измерение, в фильме главный герой в новой вселенной получил возможность не только путешествовать по временному измерению, но и наблюдать в трехмерном пространстве проекции четырехмерного.

«Уравнение гравитации»

Пока Мэттью МакКонахи (вместе с роботом) летает по экзопланетам и в черную дыру, оставшийся на земле профессор в исполнении Майкла Кейна пытается решить некое «уравнение гравитации», которое позволило бы связать в одну теорию квантовую механику и ОТО и тем самым понять физику червоточины и черной дыры.

Излучение Грибова-Хокинга предполагает испарение черной дыры вследствие квантовых флуктуаций, связанных с образованием пар виртуальных частиц. Одна частица из такой пары улетает от черной дыры, а другая - с отрицательной энергией - «падает» в нее. Впервые о возможности такого явления высказывался советский физик-теоретик Владимир Грибов. А в первой половине 1970-х годов, после визита в СССР, Стивен Хокинг опубликовал работу, в которой предсказал существование излучения черных дыр (называемое излучением Хокинга в англоязычной литературе или Грибова-Хокинга в русскоязычной).

И, надо сказать, герой Майкла Кейна мучается не один. Создание универсальной теории, связывающей ОТО и квантовую механику, - основная задача большинства современных математических физиков - специалистов по теории струн. Главная задача теории - объединение всех четырех известных взаимодействий: сильного, слабого, электромагнитного и гравитационного. Описанием первых трех занимается квантовая теория поля (КТП), математическая модель современной физики элементарных частиц, последним - ОТО. При этом ОТО в целом не противоречит КТП, поскольку говорит о явлениях на других масштабах длин и энергий. Но если ОТО имеет дело с космологическими объектами огромных масс, то КТП применима на субатомном уровне.

Проблема в том, что обе теории вступают в противоречие друг с другом на планковских масштабах, поскольку на них в ОТО необходим учет квантовых поправок. Так, в черной дыре квантовые эффекты приводят к ее испарению. Квантовая версия ОТО, получаемая аналогичным КТП образом, оказывается неперенормируемой, то есть наблюдаемые величины не удается сделать конечными. Решению данного вопроса и посвящена большая часть исследований в этой области. Сама же теория струн (M-теория) основана на предположении существования на планковских масштабах гипотетических одномерных объектов - струн, возбуждения которых интерпретируются как элементарные частицы и их взаимодействия.

Недавно вышедший на экраны визуально-захватывающий фильм "Интрестеллар" основывается на реальных научных понятиях, таких как вращающиеся черные дыры, кротовые норы и расширение времени.
Но если вы не знакомы с этими понятиями, то возможно, слегка запутаетесь во время просмотра.
В фильме команда космических исследователей отправляется во внегалактическое путешествие сквозь кротовую нору. На другой стороне они попадают в иную Солнечную систему с вращающейся черной дырой вместо звезды.
Они находятся в гонке с пространством и временем, чтобы выполнить свою миссию. Такое космическое путешествие может показаться слегка запутанным, но оно основывается на основных принципах физики.
Вот основные 5 понятий физики, которые нужно знать, чтобы понять "Интерстеллар".

ИСКУССТВЕННАЯ ГРАВИТАЦИЯ

Самой большой проблемой, с которой сталкиваемся мы, люди, при длительных космических путешествиях, является невесомость. Мы родились на Земле, и наше тело приспособилось к определенным гравитационным условиям, но когда мы находимся в космосе длительное время, наши мышцы начинают ослабевать.
С этой проблемой сталкиваются и герои в фильме "Интерстеллар".

Чтобы справиться с этим, ученые создают искусственную гравитацию в космических кораблях. Одним из способов сделать это – раскрутить космический корабль, как в фильме. Вращение создает центробежную силу, которая отталкивает объекты к внешним стенкам корабля. Это отталкивание похоже на гравитацию, только в обратном направлении.
Такую форму искусственной гравитации вы испытываете, когда едете вокруг кривой малого радиуса и вам кажется, что вас отталкивает наружу, от центральной точки кривой. Во вращающемся космическом корабле стены для вас становятся полом.

ВРАЩАЮЩАЯСЯ ЧЕРНАЯ ДЫРА В КОСМОСЕ

2

Астрономы, хотя и косвенно, наблюдали в нашей Вселенной вращающиеся черные дыры. Никто не знает, что находится в центре черной дыры, но у ученых есть для этого название – сингулярность.

Вращающиеся черные дыры искажают пространство вокруг себя по-иному в отличие от неподвижных черных дыр.

Этот процесс искажения называется "увлечение инерциальных систем отсчёта" или эффект Лензе-Тирринга, и оно влияет на то, как будет выглядеть черная дыра, искажая пространство, и что более важно пространство-время вокруг нее. Черная дыра, которую вы видите в фильме, достаточно сильно приближена к научному понятию.

3

Космический корабль "Эндюранс" направляется к Гаргантюа - вымышленной сверхмассивной черной дыре массой в 100 миллион раз больше Солнца.
Она находится на расстоянии 10 миллиардов световых лет от Земли, и вокруг нее вращается несколько планет. Гаргантюа вращается с поразительной скоростью 99,8 процентов от скорости света.
Аккреционный диск Гарагантюа содержит газ и пыль с температурой поверхности Солнца. Диск снабжает планеты Гаргантюа светом и теплом.

4

Сложный вид черной дыры в фильме связан с тем, что изображение аккреционного диска искривлено гравитационным линзированием. На изображении появляется две дуги: одна образуется над черной дырой, а другая под ней.

КРОТОВАЯ НОРА

5

Кротовая нора или червоточина, которую использует экипаж в "Интерстеллар" – это одно из явлений в фильме, существование которого не доказано. Она гипотетическая, но очень удобная в сюжетах научно-фантастических историй, где нужно преодолеть большое космическое расстояние.
Просто кротовые норы – это своего рода кратчайший путь сквозь пространство. Любой объект с массой создает норку в пространстве, что означает, что пространство можно растягивать, деформировать и даже складывать.
Червоточина - это как складка на ткани пространства (и времени), которая соединяет две очень далекие области, что помогает космическим путешественникам преодолеть большое расстояние за короткий период времени.
Официальное название кротовой норы – "мост Эйнштейна-Розена", так как впервые она была предложена Альбертом Эйнштейном и его коллегой Натаном Розеном в 1935 году.

6

В двухмерных диаграммах устье кротовой норы показано в виде круга. Однако, если бы мы могли увидеть кротовую нору, она бы выглядела, как сфера.
На поверхности сферы был бы виден гравитационно искаженный вид пространства с другой стороны "норы".
Размеры кротовой норы в фильме: 2 км в диаметре и расстояние переноса - 10 миллиардов световых лет.

ГРАВИТАЦИОННОЕ ЗАМЕДЛЕНИЕ ВРЕМЕНИ

7

Гравитационное замедление времени – это реальное явление, наблюдаемое на Земле. Оно возникает потому, что время относительно. Это означает, что оно течет по-разному для различных систем координат.
Когда вы находитесь в сильной гравитационной среде, время течет медленнее для вас по сравнению с людьми, находящимися в слабой гравитационной среде.
Если вы находитесь возле черной дыры, как в фильме, ваша система координат, а, следовательно, восприятие времени отличается от восприятия того, кто находится на Земле. Это потому, что гравитационное притяжение черной дыры тем сильнее, чем ближе вы к ней находитесь.

Согласно уравнению Эйнштейна время течет медленнее в более высоких гравитационных полях. То же самое происходит на планете, близкой к черной дыре: часы тикают медленнее, чем на космическом корабле, вращающемся дальше.
Присутствие массы искривляет мембрану, как резиновый лист.
Если достаточно массы концентрируется в одной точке, формируется сингулярность. Объекты приближающиеся к сингулярности проходят через горизонт событий, из которого они никогда не возвращаются.
Для вас минута возле черной дыры будет длиться 60 секунд, но если бы вы могли взглянуть на часы на Земле, минута продлилась бы меньше 60 секунд. Это значит, что вы будете стареть медленнее людей на Земле, и чем сильнее гравитационное поле, в котором вы находитесь, тем сильнее замедляется время.
Это играет важную роль в фильме, когда исследователи встречаются с черной дырой в центре другой Солнечной системы.

Недавно вышедший на экраны визуально-захватывающий фильм "Интрестеллар" основывается на реальных научных понятиях , таких как вращающиеся черные дыры, кротовые норы и расширение времени .

Но если вы не знакомы с этими понятиями, то возможно, слегка запутаетесь во время просмотра.

В фильме команда космических исследователей отправляется вовнегалактическое путешествие сквозь кротовую нору . На другой стороне они попадают в иную Солнечную систему с вращающейся черной дырой вместо звезды.

Они находятся в гонке с пространством и временем, чтобы выполнить свою миссию. Такое космическое путешествие может показаться слегка запутанным, но оно основывается на основных принципах физики.

Вот основные 5 понятий физики , которые нужно знать, чтобы понять "Интерстеллар".

Искусственная гравитация

Самой большой проблемой, с которой сталкиваемся мы, люди, при длительных космических путешествиях, является невесомость . Мы родились на Земле, и наше тело приспособилось к определенным гравитационным условиям, но когда мы находимся в космосе длительное время, наши мышцы начинают ослабевать.

С этой проблемой сталкиваются и герои в фильме "Интерстеллар".


Чтобы справиться с этим, ученые создают искусственную гравитацию в космических кораблях . Одним из способов сделать это - раскрутить космический корабль, как в фильме. Вращение создает центробежную силу, которая отталкивает объекты к внешним стенкам корабля. Это отталкивание похоже на гравитацию, только в обратном направлении.

Такую форму искусственной гравитации вы испытываете, когда едете вокруг кривой малого радиуса и вам кажется, что вас отталкивает наружу, от центральной точки кривой. Во вращающемся космическом корабле стены для вас становятся полом.

Вращающаяся черная дыра в космосе


Астрономы, хотя и косвенно, наблюдали в нашей Вселенной вращающиеся черные дыры . Никто не знает, что находится в центре черной дыры, но у ученых есть для этого название - сингулярность .

Вращающиеся черные дыры искажают пространство вокруг себя по-иному в отличие от неподвижных черных дыр.

Этот процесс искажения называется "увлечение инерциальных систем отсчёта" или эффект Лензе-Тирринга, и оно влияет на то, как будет выглядеть черная дыра, искажая пространство, и что более важно пространство-время вокруг нее. Черная дыра, которую вы видите в фильме, достаточно сильно приближена к научному понятию .


  • Космический корабль "Эндюранс" направляется к Гаргантюа - вымышленной сверхмассивной черной дыре массой в 100 миллион раз больше Солнца.
  • Она находится на расстоянии 10 миллиардов световых лет от Земли, и вокруг нее вращается несколько планет. Гаргантюа вращается с поразительной скоростью 99,8 процентов от скорости света.
  • Аккреционный диск Гарагантюа содержит газ и пыль с температурой поверхности Солнца. Диск снабжает планеты Гаргантюа светом и теплом.


Сложный вид черной дыры в фильме связан с тем, что изображение аккреционного диска искривлено гравитационным линзированием. На изображении появляется две дуги: одна образуется над черной дырой, а другая под ней.

Кротовая нора


Кротовая нора или червоточина, которую использует экипаж в "Интерстеллар" - это одно из явлений в фильме, существование которого не доказано . Она гипотетическая, но очень удобная в сюжетах научно-фантастических историй, где нужно преодолеть большое космическое расстояние.

Просто кротовые норы - это своего рода кратчайший путь сквозь пространство . Любой объект с массой создает норку в пространстве, что означает, что пространство можно растягивать, деформировать и даже складывать.

Червоточина - это как складка на ткани пространства (и времени), которая соединяет две очень далекие области, что помогает космическим путешественникам преодолеть большое расстояние за короткий период времени .

Официальное название кротовой норы - "мост Эйнштейна-Розена", так как впервые она была предложена Альбертом Эйнштейном и его коллегой Натаном Розеном в 1935 году.


  • В двухмерных диаграммах устье кротовой норы показано в виде круга. Однако, если бы мы могли увидеть кротовую нору, она бы выглядела, как сфера.
  • На поверхности сферы был бы виден гравитационно искаженный вид пространства с другой стороны "норы".
  • Размеры кротовой норы в фильме: 2 км в диаметре и расстояние переноса - 10 миллиардов световых лет.

Гравитационное замедление времени


Гравитационное замедление времени - это реальное явление, наблюдаемое на Земле. Оно возникает потому, что время относительно . Это означает, что оно течет по-разному для различных систем координат.

Когда вы находитесь в сильной гравитационной среде, время течет медленнее для вас по сравнению с людьми, находящимися в слабой гравитационной среде.

Если вы находитесь возле черной дыры, как в фильме, ваша система координат, а, следовательно, восприятие времени отличается от восприятия того, кто находится на Земле. Это потому, что гравитационное притяжение черной дыры тем сильнее, чем ближе вы к ней находитесь.


  • Согласно уравнению Эйнштейна время течет медленнее в более высоких гравитационных полях. То же самое происходит на планете, близкой к черной дыре: часы тикают медленнее, чем на космическом корабле, вращающемся дальше.
  • Присутствие массы искривляет мембрану, как резиновый лист.
  • Если достаточно массы концентрируется в одной точке, формируется сингулярность. Объекты приближающиеся к сингулярности проходят через горизонт событий, из которого они никогда не возвращаются.

Для вас минута возле черной дыры будет длиться 60 секунд, но если бы вы могли взглянуть на часы на Земле, минута продлилась бы меньше 60 секунд. Это значит, что вы будете стареть медленнее людей на Земле , и чем сильнее гравитационное поле, в котором вы находитесь, тем сильнее замедляется время.

Это играет важную роль в фильме, когда исследователи встречаются с черной дырой в центре другой Солнечной системы.

Пятимерная Вселенная


Альберт Эйнштейн последние 30 лет своей жизни посвятил разработке "теории всего ", которая бы сочетала математические понятия гравитации с другими тремя фундаментальными силами природы: сильную силу, слабую силу и электромагнитную силу. Ему, как впрочем, и другим физикам это не удалось.

Некоторые физики считают, что единственный способ разгадать эту загадку - это воспринимать нашу Вселенную, как 5-мерную, а не 4-мерную , как предлагал Эйнштейн в теории относительности, где сочетается трехмерное пространство с одномерным временем.

В фильме наша Вселенная представлена в 5-ти измерениях, и гравитация играет важную роль во всем этом.


Нашу трехмерную Вселенную можно представить в виде плоской мембраны (или "браны"), плавающую в четырехмерном гиперпространстве.

Трейлер "Интерстеллар" 2014



Часть из показанного в фильме - чистая правда, другая часть основана на научных предположениях, а еще часть - чистой воды спекуляция.

Фильм Кристофера Нолана «Интерстеллар» многие называют самым научным в современной кинофантастике, но и претензии ему предъявляют по всей строгости. Споры о достоинствах и недостатках этой картины заставляют людей зарываться с головой в учебники физики. Попробуем и мы разобраться, как «Интерстеллар» стал таким, каков он есть, и что в нём строго научно, а что - не совсем.

ОСТОРОЖНО! СПОЙЛЕРЫ!

Видеоверсия этой статьи.

Человек, придумавший «Интерстеллар»

Имя известного физика Кипа Торна всплывает в каждом споре о научности картины Нолана. Учёный сыграл в создании фильма огромную роль. Торн не ограничивался ролью научного консультанта - по сути, именно он придумал «Интерстеллар».

Досье: Стивен Кип Торн

Специалист в области теории гравитации, астрофизики и квантовой теории измерений. Более пятнадцати лет был профессором Калифорнийского технологического института (Калтех). Один из главных мировых экспертов по общей теории относительности. Популяризатор науки. Близкий друг и коллега Стивена Хокинга.

Лет тридцать назад знаменитый Стивен Хокинг устроил своему другу, молодому физику и одинокому отцу Кипу Торну свидание вслепую с Линдой Обст, редактором раздела науки журнала The New-York Times Magazine и начинающим телепродюсером. Романа у парочки так и не вышло, зато образовалась крепкая дружба. Лет десять назад Линда и Кип загорелись идеей создать фильм, основанный на достижениях и знаниях современной науки. Они написали восьмистраничный набросок, где фигурировали, помимо прочего, целых шесть кротовых нор, пять черных дыр и загадочная раса инопланетян, живущих в «балке» - пространстве, имеющем минимум пять измерений. Одним из героев должен был стать Стивен Хокинг, который лично отправлялся в космос.

Предлагая свою идею киностудии, Торн поставил условие: все сюжетные ходы в фильме должны быть научно достоверны или хотя бы основаны на допустимых теориях и спекуляциях.

Идеей заинтересовалась студия Paramount, а в режиссерское кресло уселся сам Стивен Спилберг. Сценарий поручили младшему брату Кристофера Нолана Джонатану. Но затем начались трудности: из-за забастовки Гильдии сценаристов Джон прекратил работу над фильмом, затем ему пришлось переключиться на «Темного рыцаря», а Спилберг что-то не поделил с боссами Paramount и покинул проект. Торн пал было духом, но Линда не отчаялась и за пару недель нашла нового режиссера - Кристофера Нолана.

Старший Нолан привнес в «Интерстеллар» немало нового. Крис переписал сценарий, объединив его с собственными идеями, изначально предназначавшимися для совсем другого проекта. Финальный вариант был совсем не похож на изначальный восьмистраничный набросок, но Кип не расстроился, поскольку, с его точки зрения, Нолан почти всегда придерживался озвученного Торном принципа. Торн категорически возразил режиссеру лишь один раз - когда Крис придумал сцену, где герои двигались быстрее света. Кип две недели доказывал, почему это совершенно невозможно, и добился своего.

Вместе с тем Кип понимал, что Крис снимает художественное кино, поэтому то и дело закрывал глаза на мелкие неточности, нужные для усиления драматизма, и следил лишь, чтобы фантазию Нолана не уносило слишком далеко. Получилось ли у него? Давайте разберемся.

Пыльный мир и патогены

Начало «Интерстеллара» разворачивается на Земле будущего, которая выглядит крайне малопривлекательно. Новый патоген уничтожил все сельхозкультуры, кроме кукурузы, возникла угроза голода, правительства распустили армии и научные центры, а простые люди вынуждены становиться фермерами, чтобы прокормить себя. Словно этого мало, жители страдают от регулярных пылевых бурь, превративших большую часть США в «пылевой котел». Хуже того, патоген уничтожает запасы кислорода в воздухе, замещая его азотом, так что те, кто не умрёт от голода, банально задохнутся.

ПРЕТЕНЗИЯ: Постойте! Как один-единственный патоген мог уничтожить всю растительную жизнь? Как правило, подобные вещи влияют только на определенные виды растений, полностью выкашивая их популяцию. Те же заболевания, которые затрагивают сразу несколько видов, как правило, не настолько сильны.

История Земли знает примеры массовых вымираний, когда из-за резко изменившихся условий погибала большая часть живых существ. Так произошло, когда возникли цианобактерии, выделявшие кислород, который в те времена был настоящим ядом для большинства видов. Сейчас вполне может развиться похожий микроорганизм, который, например, будет выделять в атмосферу азот.

Есть и другой возможный сценарий: появление нового заболевания, которое поражает те основные разновидности растений, от которых мы зависим больше всего. Биологи не исключают такую возможность, хотя и находят ее крайне маловероятной.

КОНТРАРГУМЕНТ: Но зачем в такой ситуации сокращать расходы на науку? Их, наоборот, надо увеличивать, чтобы биологи вывели новые растительные культуры, обладающие иммунитетом к вирусу, изобрели прививку, противоядие или другой способ борьбы с напастью. Ведь именно так сейчас мы боремся с любой болезнью, имеющей даже малейший шанс вызвать пандемию. Помимо прочего, это же гигантский бизнес, где можно заработать огромные деньги. Куда выгоднее, чем выращивать кукурузу в Канзасе.

Возможно, такие попытки были, но потерпели неудачу. Даже сейчас есть болезни, вакцины от которых до сих пор не нашли, хотя разработки ведутся уже лет тридцать. Допустим, поначалу государства действительно тратили на поиски лекарства сотни миллионов, но затем поступления в казну прекратились, бюджеты иссякли, и финансирование пришлось отменить.

КОНТРАРГУМЕНТ: Но кислород-то куда из воздуха денется?

Кислород в атмосфере в основном появляется благодаря фотосинтезу растений. Если новый патоген повлияет именно на этот процесс, кислород перестанет быть возобновляемым ресурсом. Теперь посмотрим, как образуется углекислый газ: либо в процессе дыхания всех живых существ, либо в результате гниения органики, либо в виде промышленных выбросов предприятий и выхлопов автомобилей. Даже если после голода и экономического кризиса сократится население и уменьшатся выбросы в атмосферу, погибающая растительность будет гнить на полях. По некоторым оценкам, в процессе гниения будет поглощено около процента от оставшихся запасов кислорода. На его место придет угарный газ, который затруднит дыхание чувствительным людям и поднимет температуру воздуха градусов на десять. Не смертельно, конечно, но приятного мало.

Впрочем, надо признать, что подобный вариант развития событий маловероятен. Он используется в фильме не как предсказание будущего, а как сюжетный поворот, призванный заставить персонажей отправиться в космос.

Червоточина и «Эндюранс»

Воспользовавшись удачно подвернувшейся кротовой норой, NASA снаряжает межзвездную экспедицию на корабле «Эндюранс» в поисках нового дома для человечества. Хорошо, что возле Сатурна есть нора! Ведь в мире Купера путешествия со скоростью света невозможны, и к звёздам пришлось бы лететь тысячи лет.

ПРЕТЕНЗИЯ: Разве кротовые норы реальны? Неужели физики зарегистрировали хотя бы одну?

Нет, но наука допускает их существование или, по крайней мере, не отрицает его. А что не запрещено… В последнее время не без участия мистера Торна в космологии набирает популярность идея, что пространство - это не бескрайняя пустота, а своего рода материал, который поддается изменению, были бы нужные инструменты.

КОНТРАРГУМЕНТ: Допустим. Но для поддержания норы в рабочем состоянии требуются немалые количества отрицательной или экзотической материи. Да и для открытия норы требуется источник огромной гравитации типа Гаргантюа, а появление подобного в Солнечной системе погрузило бы ее в хаос.

И даже если бы кротовая нора появилась - например, из-за влияния Гаргантюа - то была бы дорогой с одностороннем движением. Для обратного путешествия потребовался бы аналогичный источник гравитации с другой стороны.

Да, само появление норы - это необходимая вольность. В фильме герои предполагали, что кротовая нора была создана существами, живущими в пятимерном пространстве, чтобы указать нам путь к спасению.

КОНТРАРГУМЕНТ: Профессор Бранд говорит, что кротовая нора появилась на орбите Сатурна за пятьдесят лет до событий «Интерстеллара». NASA разогнали за десять лет до начала фильма. То есть на протяжении сорока лет никто ничего не знал о появлении гравитационной аномалии в пределах Солнечной системы? Да толпы приверженцев теории струн выстроились бы очередями в Нобелевский комитет. Это же новость века!

С тех пор прошло полвека, о какой-то норе в космосе все успели забыть - проблем-то хватало. Помнит о ней только один сумасшедший дед, который живет под землей, косит под Кипа Торна и собирает космические корабли на коленке.

ПРЕТЕНЗИЯ: Кстати, о корабле! Зачем ракета-носитель выводила его на орбиту, если ему оказалось под силу взлетать с планет Миллер и Манна?

Во-первых, на орбиту выходил «Эндюранс», а на планеты космонавты садились в «Рейнджере» - челноке, пристыкованном к «Эндюранс». Во-вторых, на пути от Земли до Гаргантюа заправок нет, так что топливо надо экономить.

КОНТАРГУМЕНТ: Кстати, о топливе. На такую дорогу его требуется очень много. Почему ни на одном кадре с «Эндюранс» мы не видим гигантских топливных баков?

А вы уверены, что камера показала все отсеки? Зачем, к примеру, показывать грузовые трюмы, где ничего не происходит? Кроме того, на пути к Сатурну члены экспедиции могли экономить топливо при помощи гравитационных манёвров - разгоняться, замедляться или менять направление полета под действием гравитации небесных тел. Примерно так в конце девяностых годов NASA запускало зонд «Кассини». На его борту было недостаточно топлива, чтобы добраться до Сатурна, но в NASA рассчитали курс так, чтобы «Кассини» прошел по касательной орбит Венеры, Земли и Юпитера. Каждый такой маневр придавал зонду ускорение.

Чтобы добраться от Земли до Сатурна за два года, «Эндюранс» должен преодолевать в среднем 20 километров в секунду. Кип Торн считает, что с помощью маневров и увеличения эффективности ракетного топлива к концу XXI века человечеству будет под силу достичь скорости в 300 километров в секунду. Так что долететь до Сатурна за такое время вполне реально.

КОНТРАРГУМЕНТ: Но как они затормозили на орбите Сатурна и не улетели дальше? Мощи корабельных носовых двигателей тут явно бы не хватило.

Самих по себе, может, и не хватило бы, но с помощью очередных коррекций курса на орбите Сатурна - почему нет? Кроме того, не стоить забывать о кротовой норе, которая вполне могла повлиять на расположение гравитационных полей.

Жизнь на орбите чёрной дыры

Пройдя через кротовую нору, Купер и остальные попадают в конечную точку своего путешествия - планетную систему возле огромной черной дыры Гаргантюа. Это небесное тело - предмет особой гордости как Кипа Торна, так и мастеров по спецэффектам. При изображении дыры использовались вычисления, сделанные Торном специально для фильма. Получившийся результат ошарашил самого Кипа. Он догадывался, как должны в реальности выглядеть черные дыры, но компьютерная анимация превзошла все его ожидания.

ПРЕТЕНЗИЯ: Рядом с Гаргантюа не видно других небесных тел, кроме парочки планет. Откуда планеты Миллер, Эдмундса и Манна черпают тепло и свет?

Из аккреционного диска. Притяжение Гаргантюа так велико, что способно захватить целую звезду. Когда звезда движется прямо на черную дыру, ее судьба плачевна и предсказуема. Если же её орбита пролегает рядом с Гаргантюа, то притяжение черной дыры попросту разрывает небесное тело на части, а большая часть материи, ранее составлявшей тело звезды, попадает на орбиту Гаргантюа и формирует аккреционный диск. Он излучает свет, тепло и радиацию, так что вполне может заменить солнце.

КОНТРАРГУМЕНТ: Выходит, жить на этих планетах нельзя из-за высоких температур и радиации. Как же экипаж «Эндюранс» не поджарился, просто пролетая мимо?

Возможно, с момента, когда последняя звезда попала в гравитационные тиски Гаргантюа, прошло несколько миллионов лет. Тогда газ, составляющий диск, остыл до температуры в несколько тысяч градусов и уже не излучает такой сильной радиации, хотя продолжает давать достаточно света и тепла. Низкой температурой объясняется и блеклость диска.

Гаргантюа - самая достоверная чёрная дыра в истории кино. Но даже она отличается от реальной.

ПРЕТЕНЗИЯ: Откуда там вообще планеты взялись? Разве их не должно было засосать внутрь дыры?

На самом деле наука допускает существование возле гигантских черных дыр зон обычного времени и пространства, даже целых планетных систем, которые вращаются вокруг центральной сингулярости по сложным, но замкнутым орбитам.

ПРЕТЕНЗИЯ: Аккреционный диск выглядит неправдоподобно. Он должен быть несколько сплющенным и несимметричным. Кроме того, модель не учитывает эффект Допплера: один край диска должен отливать красным, другой - синим.

Да, тут Кристофер Нолан специально пошел против истины, чтобы не смущать зрителей. А еще он специально занизил скорость вращения черной дыры. Кроме того, учитывая расстояние от черной дыры до планеты Миллер, Гаргантюа должна занимать половину небосвода, а планета при таком раскладе находилась бы внутри аккреционного диска, так что он в основном был бы виден только с противоположной дыре стороны планеты.

Планеты Миллер и Манна

Первым делом астронавты отправляются на планету Миллер. Время там идёт замедленно - один час на ее поверхности равен семи земным годам.

ПРЕТЕНЗИЯ: Такое возможно только вблизи объектов, обладающих огромной массой, например, на орбите черной дыры. Но нужно находиться совсем рядом с дырой, практически над ее поверхностью. А стабильная орбита вокруг черной дыры должна превышать диаметр Гаргантюа как минимум трижды. Иначе планету Миллер давно бы засосало внутрь. С учетом показанных в фильме кадров время на поверхности планеты должно течь медленнее, чем на Земле, всего процентов на двадцать.

Это верно в отношении невращающихся черных дыр, но с Гаргантюа все обстоит по-другому. Гаргантюа - сверхмассивная вращающаяся черная дыра, что несколько меняет ее воздействие на окружающее пространство. При определенных условиях, скажем, если она будет вращаться очень быстро, а планета Миллер - располагаться достаточно близко к циркулярной орбите Гаргантюа, такое замедление времени возможно.

Правда, у вращающихся черных дыр есть предел скорости вращения, причем максимума они, как правило, не достигают. Чтобы на планете Миллер было такое замедление времени, Гаргантюа должна вращаться лишь чуточку меньше максимума. Это реально, хотя и маловероятно.

КОНТРАРГУМЕНТ: А как быть с приливными волнами? Они возможны, только если разница в гравитационном притяжении черной дыры на разных сторонах планеты очень велика. Но в таком случае планету просто разорвало бы на части!

На самом деле нет. Благодаря гигантским размерам Гаргантюа разница в притяжении черной дыры на разных сторонах планеты Миллер недостаточно велика. Тем не менее силы притяжения должно было хватить для деформирования планеты. Планета Миллер должна была выглядела как эллипсоид, сжатый по бокам и вытянутый в длину. Кроме того, если бы планета вращалась вокруг своей оси, то силы притяжения Гаргантюа действовали бы в нескольких направлениях в зависимости от положения орбит. По фильму же мы видим, что все гигантские волны движутся примерно в одном направлении. Отсюда следует вывод, что планета Миллер всегда повёрнута к черной дыре одной и той же стороной.

Возможно и еще одно объяснение: из-за деформации планеты и притяжения Гаргантюа в определенных районах постоянно проходят землетрясения, вызывающие гигантские цунами.

КОНТРАРГУМЕНТ: Радиация, отсутствие привычного источника света и тепла - планета Миллер не выглядит подходящим местом для жилья. Неужели нужно было лететь на нее в первую очередь и неужели этой части экспедиции нельзя было избежать?

Разумеется, можно было. Планета Миллер никогда бы не стала бы первым кандидатом на место нового дома для человечества, если бы Купер или другие члены экипажа «Эндюранс» догадались использовать по назначению кучу научного оборудования, именно с этой целью доставленного на борт корабля. Информацию о пригодности планеты Миллер для жизни можно было получить прямо с орбиты при помощи телескопов и прочих приборов. Тех самых, которыми Ромили почти четверть века изучал саму чёрную дыру, пока остальные боролись с цунами.

Не спускаясь на планету, можно было бы провести ее изучение с безопасного расстояния, где временной лаг минимальный. Простой спектральный анализ здорово сэкономил бы топливо экспедиции и снизил бы накал страстей на экране. Кристоферу Нолану нужно было это замедление времени, чтобы показать, как растёт пропасть между отцом и дочерью.

В крайнем случае, если NASA так уж хотелось отправить на планету делегацию из мыслящих существ, вполне можно было бы послать в экспедицию экипаж, состоящий из одних роботов. Роботы способны выжить почти в любых условиях (судя по фильму - даже в черной дыре), они менее требовательны, не так капризны и легче переносят одиночество.

ПРЕТЕНЗИЯ: Насколько оправданны маневры Купера, которые он совершил перед посадкой на планете Миллер, чтобы избежать замедления времени и притяжения черной дыры?

Замедления времени он не избежал бы в любом случае - оно возрастает обратно пропорционально расстоянию от черной дыры. Но сэкономить время путем корректировки курса корабля благодаря гравитационному притяжению разных небесных тел еще как можно. В фильме Купер решает избежать притяжения Гаргантюа, разогнавшись до огромной скорости, а затем резко затормозить, попав в зону притяжения нейтронной звезды.

На самом деле подобным образом снизить скорость (и чтобы корабль и пассажиров при резком торможении не разорвало на кусочки) с помощью нейтронной звезды не удалось бы - для этого требуется небольшая черная дыра размером с Землю. Но Нолан был непреклонен насчёт количества черных дыр в фильме: одна, только одна!

***

Перенесемся на планету Манна. Действие разворачивается высоко над поверхностью, в небе которой висят гигантские ледяные облака.

ПРЕТЕНЗИЯ: Как возможно существование подобных облаков? И почему они не падают под собственным весом?

По-видимому, планета Манна вращается вокруг Гаргантюа по крайне сложной орбите и большую часть времени проводит вдали от черной дыры. Почему? Во-первых, до планеты Манна было чуть ли не дольше всего лететь, когда экипаж «Эндюранс» решал, откуда начать. Зато, когда Купер взлетает с планеты, «Рейнджер» оказывается совсем рядом с Гаргантюа. А во-вторых, на это намекают гигантские ледяные облака, которые замерзают на то время, пока планета удалена от аккреционного диска.

А не падают они благодаря особому виду магии. Киномагии. На самом деле они давно должны были рухнуть на поверхность.

Падение в чёрную дыру

ПРЕТЕНЗИЯ: После взлета с планеты Манна «Эндюранс» захватывает притяжением Гаргантюа. Куперу удается спасти основной модуль, но сам он, робот ТАРС и «Рейнджер» проходят сквозь горизонт событий и падают в черную дыру. Как они пережили весь процесс? Их должно было или убить радиацией и температурой аккреционного диска, или они должны были спагеттицифицироваться - превратиться в вытянутую нить из-за разницы в притяжении разных частей тела.

Если Гаргантюа последний раз захватывала звезды в свой гравитационный капкан миллионы лет назад, то диск стал безопасным для случайных путешественников (и бесполезным для окрестных планет, к слову). Что касается спагеттификации, она опять же возможна в маленьких и невращающихся черных дырах. Размеры и скорость вращения Гаргантюа сводят разницу притяжений различных частей тела к нулю, так что превращения в спагетти можно не опасаться.

КОНТРАРГУМЕНТ: Разве это значит, что можно благополучно пережить падение в черную дыру?

Нет, конечно. Отправившись следом за ТАРСом, Купер подписал себе смертный приговор и сам это понимал.

КОНТРАРГУМЕНТ: Допустим, каким-то чудом Купер остался жив. Как он рассчитывал передать сигнал обратно домой? Ведь они испытывали трудности даже с передачей сигнала через кротовую дыру. Что уж говорить о черной дыре, из которой, как известно, не сбегает ничто.

Считалось, что притяжения черной дыры не может избежать ничто, даже свет. Но Стивен Хокинг доказал, что и черные дыры могут излучать элементарные частицы, преимущественно фотоны. Некоторые теории подразумевают, что информацию в принципе невозможно остановить, но единого взгляда на этот вопрос у ученых нет. Тем не менее они едва ли согласятся с тем, что из черной дыры может транслироваться сигнал, так что это, конечно, преувеличение.

ПРЕТЕНЗИЯ: Что это за гравитационные данные, без которых невозможно решение уравнения профессора Бранда?

Согласно фильму, данные были нужны профессору, чтобы подойти к пониманию гравитации и ее взаимодействия с квантовой механикой. Впоследствии это помогло бы поднять с Земли новые человеческие колонии. Разумеется, для решения таких проблем в реальной жизни прыжок в черную дыру не понадобится. И вряд ли такие данные можно передать столь короткой последовательностью сигналов.

ПРЕТЕНЗИЯ: Пройдя горизонт событий, Купер оказывается в тессеракте, четырехмерном гиперкубе, позволяющему измерять время как линейную величину и позволяющему общаться с Мёрф на любом отрезке её жизни. Это тоже научно?

С момента прыжка в черную дыру и до конца фильма сценарий перестает ориентироваться на науку и оперирует чистой воды спекуляциями. Да, учёные допускают существование других измерений, но их познание в трехмерном пространстве не представляется возможным. И уж конечно, нельзя научно доказать, что после прыжка в черную дыру неведомые силы перенесут человека в комнату его дочери. Все эти загадочные явления Нолан списывает на таинственных и загадочных «их», живущих в пятимерном пространстве.

***
Нолан снимал все-таки фантастику, а не документальное кино, поэтому имел право игнорировать кое-какие детали. «Интерстеллар» порой становился жертвой художественного замысла, визуальные решения делались для удобства зрителей и съемочной группы, а не для ученых. Тем не менее картина получилась куда более научной, чем большая часть современной кинофантастики. Задумайтесь: на каком еще сеансе нам вообще требовалось знать, как работает реальная астрофизика?

Постараюсь ответить на несколько вопросов, возникающих по фильму у зрителей.

1) Почему черная дыра Гаргантюа в фильме выглядит именно так?

Фильм Интерстеллар - это первый художественный фильм в истории кино, где было применена визуализация черной дыры на основе физико-математической модели. Моделирование осуществлялось командой специалистов из 30 человек (отделом визуальных эффектов Павла Франклина) в сотрудничестве с Кипом Торном - физиком-теоретиком с мировым именем, известного своими работами в теории гравитации, астрофизики и квантовой теории измерений. На один кадр тратилось около 100 часов, а всего на модель ушло около 800 терабайт данных.
Торн создал не только математическую модель, но и написал специализированное программное обеспечение (CGI), позволившее построить компьютерную модель визуализации.

Вот что получилось у Торна:

Конечно, справедливым будет задать вопрос: является ли моделирование Торна первым в истории науки? И является ли изображение, полученное Торном, чем-то ранее не встречавшимся в научной литературе? Разумеется, нет.
Жан Пьер Люмине из Обсерватории Париж-Мюдон, отделения Релятивистской Астрофизики и Космологии, также приобревший всемирную известность своими трудами из области черных дыр и космологии, - один из первых ученых, кто получил путем компьютерного моделирования изображение черной дыры. В 1987-м году выходит его книга «Черные дыры: популярное введение» где он пишет:

«Первые компьютерные картинки черной дыры, окруженной аккреционным диском, были получены мной (Luminet, J.-P. (1979): Astron. Astrophys.). Более тонкие расчеты проведены Марком (Marck, J.-A. (1993): Class. Quantum Grav) как для метрики Шварцшильда, так и для случая вращающейся черной дыры. Правдоподобные изображения - то есть рассчитанные с учетом кривизны пространства, красного смещения и физических свойств диска могут быть получены для произвольной точки, даже находящейся внутри горизонта событий. Был даже создан фильм, показывающий, как меняются эти искажения при движении по времениподобной траектории вокруг черной дыры (Delesalle, Lachieze-Rey and Luminet, 1993). Рисунок - это один из его кадров для случая движения по навесной параболической траектории»

Объяснение, почему изображение получается именно таким:

"Из-за кривизны пространства-времени в окрестности черной дыры изображение системы существенно отличается от эллипсов, которые мы бы видели, если б заменили черную дыру обычным маломассивным небесным телом. Излучение верхней стороны диска образует прямое изображение, причем из-за сильной дисторсии мы видим весь диск (черная дыра не закрывает от нас находящиеся за ней части диска). Нижняя часть диска также видима из-за существенного искривления световых лучей".

Изображение Люмине на удивление напоминает результат Торна, полученное им более чем через 30 лет после работ француза!

Почему же в других многочисленных визуализациях: как в статьях, так и научно-популярных фильмах, черную дыру часто можно увидеть совсем не такой? Ответ прост: компьютерное «рисование» черной дыры на основе математической модели - весьма сложный и трудоемкий процесс, который часто не вписывается в скромные бюджеты, поэтому авторы чаще всего обходятся работой дизайнера, а не физика.

2) Почему аккреционный диск Гаргантюа не такой эффектный, какой можно увидеть на многочисленных картинках и научно-популярных фильмах? Почему нельзя было показать черную дыру более яркой и внушительной?

Этот вопрос я объединю со следующим:

3) Известно, что аккреционный диск черной дыры является источником очень интенсивной радиации. Космонавты бы просто погибли, если бы приблизись к черной дыре.

И это действительно так. Черные дыры - это двигатели самых ярких, самых высокоэнергетичных источников излучения во Вселенной. По современным представлениям, сердцем квазаров, которые светят порой ярче, чем сотни галактик, всех вместе взятых, является черная дыра. Своей гравитацией она притягивает огромные массы вещества, заставляя его сжиматься в небольшой области под невообразимо высоким давлением. Это вещество нагревается, в нем текут ядерные реакции с испусканием мощнейшего рентгеновского и гамма излучения.
Вот как часто рисуют классический аккреционный диск черной дыры:

Если бы Гаргантюа была такой, то такой аккреционный диск убил бы своим излучением астронавтов. Аккреция у черной дыры Торна не такая плотная и массивная, по его модели температура диска не выше, чем у поверхности Солнца. Во многом это благодаря тому, что Гаргантюа - сверхмассивная черная дыра, массой не менее 100 миллионов масс солнца, с радиусом в одну астрономическую единицу.
Это не просто сверхмассивная, а ультрамассивная черная дыра. Даже черная дыра в центре Млечного Пути обладает, по разным оценкам, массой 4-4.5 млн. солнечных масс.
Хотя Гаргантюа - далеко не рекордсмен. Например, дыра в галактике NGC 1277 обладает массой 17 миллиардов солнц.
Идея представить себе такой эксперимент, в котором люди исследуют черную дыру, беспокоила Торна с 80-х годов. Уже в своей книге «Черные дыры и складки времени. Дерзкое наследие Эйнштейна», изданной в 1990-м году, Торн рассматривает гипотетическую модель межзвездного путешествия, в котором исследователи изучают черные дыры, желая как можно ближе подобраться к горизонту событий, чтобы лучше понять его свойства.
Исследователи начинают с небольшой черной дыры. Она их совершенно не устраивает потому, что создаваемые ею приливные силы слишком велики и опасны для жизни. Они сменяют объект изучения на более массивную черную дыру. Но и она их не удовлетворяет. Наконец, они направляются к гигантской Гаргантюа.
Гаргантюа находится вблизи квазара 3C273 - что позволяет сравнить свойства двух дыр.
Наблюдая за ними, исследователей задаются вопросом:

"Разница между Гаргантюа и 3C273 кажется удивительной: почему Гарнатюа, в его тысячу раз большими массой и размером, не обладает таким круглым бубликом газа и гигантскими струями квазара?"

Аккреционный диск Гаргантюа относительно холодный, не массивный, он не излучает столько энергии, как это происходит в квазаре. Почему?

"После телескопических исследований Брет находит ответ: раз в несколько месяцев звезда на орбите центральной дыры 3C273 подходит близко к горизонту и разрывается приливными силами черной дыры. Остатки звезды, массой примерной 1 солнечную, разбрызгиваются в окрестностях черной дыры. Постепенно внутренне трение загоняет разбрызгивающийся газ внутрь бублика. Этот свежий газ компенсирует газ, которым бублик постоянно снабжает дыру и струи. Таким образом бублик и струи поддерживают свои запасы газа и продолжают ярко светить.
Брет объясняет, что звезды могут близко подойти и к Гаргантюа. Но поскольку Гаргантюа намного больше 3C273, его приливные силы над горизонтом событий слишком слабы, чтобы разорвать звезду. Гаргантюа проглатывает звезды целиком, не разбрызгивая их внутренности в окружающий бублик. А без бублика Гаргантюа не может создать струи и другие особенности квазара.»

Чтобы вокруг черной дыры существовал массивный излучающий диск, должен быть строительный материал, из чего он может образоваться. В квазаре - это плотные газовые облака, очень близкие к черной дыре звезды. Вот классическая модель образования аккреционного диска:

В Интерстеллар видно, что массивному аккреционному диску там просто не из чего возникнуть. Нет ни плотных облаков, ни близких звезд в системе. Если что-то и было, то все это давно съедено.
Единственное, чем довольствуется Гаргантюа - это низкоплотные облака межвездного газа, создающие слабый, «низкотемпературный» аккреционный диск, не излучающий так интенсивно, как классические диски в квазарах или двойных системах. Поэтому излучение диска Гаргантюа не убьет астронавтов.

Торн пишет в The Science of Interstellar:

"Типичный аккреционный диск имеет очень интенсивное ренгтеновское, гамма и радиоизлучение. Настолько сильное, что поджарит любого астронавта, который вздумает оказаться рядом. Диск Гаргантюа, показанный в фильме - чрезвычайно слабый диск. "Слабый" - , разумеется, не по человеческим меркам, а по стандартам типичных квазаров. Вместо того, чтобы быть нагретым до сотен миллионов градусов, как нагреваются квазарные аккреционные диски, диск Гаргантюа нагрет всего лишь на несколько тысяч градусов, примерно как поверхность Солнца. Он излучает много света, но почти не излучает рентгеновские и гамма-лучи. Такие диски могут существовать на поздних стадиях эволюции черных дыр. Поэтому диск Гаргантюа довольно отличается от картины, которую вы можете часто видеть на различных популярных ресурсах по астрофизике."

Кип Торн единственный, кто высказал существования холодных аккреционных дисков вокруг черных дыр? Разумеется, нет.

В научной литературе холодные аккреционные диски черных дыр давно исследуются:
Согласно некоторым данным, сверхмассивная черная дыра в центре Млечного Пути Стрелец А* (Sgr A*) обладает как раз таки холодным аккреционным диском:

Вокруг нашей центральной черной дыры может существовать неактивный холодный аккреционный диск , оставшийся (из-за низкой вязкости) от "бурной молодости" Sgr A*, когда темп аккреции был высок. Теперь этот диск "засасывает" горячий газ, не давая ему падать в черную дыру: газ оседает в диске на относительно больших расстояниях от черной дыры.

(с) Close stars and an inactive accretion disc in Sgr A∗: eclipses and flares
Sergei Nayakshin1 and Rashid Sunyaev. // 1. Max-Planck-Institut fur Astrophysik, Karl-Schwarzschild-Str. Garching, Germany 2. Space Research Institute, Moscow, Russi

Или Лебедь X-1:

Выполнен спектральный и временной анализ большого числа наблюдений обсерваторией RXTE аккрецирующих черных дыр Лебедь X-1, GX339-4 и GS1354-644 в низком спектральном состоянии в течение 1996-1998 гг. Для всех трех источников обнаружена корреляция между характерными частотами хаотической переменности и спектральными параметрами - наклоном спектра комптонизированного излучения и относительной амплитудой отраженной компоненты. Связь между амплитудой отраженной компоненты и наклоном Комптонизационного спектра показывает, что отражающая среда (холодный аккреционный диск ) является основным поставщиком мягких фотонов в область комптонизации.

(с) Report at SPIE organization Conference "Astronomical Telescopes and Instrumentation", 21-31 March 2000, Munich, Germany

Interaction Between Stars and an Inactive Accretion Disc in a Galactic Core // Vladimır Karas . Astronomical Institute, Academy of Sciences, Prague, Czech Republic and

(с) Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic // Ladislav Subr . Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

"Спокойные" черные дыры похожи на дыру в Туманности Андромеды - одну из первых обнаруженных сверхмассивных черных дыр. Ее масса - около 140 миллионов солнечных масс. Но нашли ее не по сильному излучению, а по характерному движению звезд вокруг этой области. Интенсивным “квазарным” излучением ядра таких галакктих не обладают. И астрофизики пришли к выводу, что на эту черную дыру просто не падает вещество. Такая ситуация характерная для “спокойных” галактик, наподобие Туманности Андромеды и Млечного Пути.

Галактики с активными черными дырами носят название активных, или сейфертовских галактик. К числу сейфертовских галактик относят примерно 1% от всех наблюдаемых спиральных галактик.

Про то, как нашли сверхмассивную черную дыру в Туманности Андромеды, хорошо показано в научно-популярном фильме BBC "Сверхмассивные черные дыры".

4) Черные дыры, как известно, обладают смертоносными приливными силами. Разве они не разорвут как астронавтов, так и планету Миллера, которая в фильме находится слишком близко к горизонту событий?

Даже лаконичная Википедия пишет про одно важное свойство сверхмассивной черной дыры:

«Приливные силы около горизонта событий значительно слабее из-за того, что центральная сингулярность расположена так далеко от горизонта, что гипотетический космонавт, путешествующий к центру чёрной дыры, не почувствует воздействия экстремальных приливных сил до тех пор, пока не погрузится в неё очень глубоко.»

С этим согласны любые научные и популярные источники, где описываются свойства сверхмассивных черных дыр.

Расположение точки, в которой приливные силы достигают такой величины, что разрушают попавший туда объект, зависит от размера чёрной дыры. Для сверхмассивных чёрных дыр, как, например, расположенных в центре Галактики, эта точка лежит в пределах их горизонта событий, поэтому гипотетический космонавт может пересечь их горизонт событий, не замечая никаких деформаций, но после пересечения горизонта событий его падение к центру чёрной дыры уже неизбежно. Для малых чёрных дыр, у которых радиус Шварцшильда гораздо ближе к сингулярности, приливные силы убьют космонавта ещё до достижения им горизонта событий

(с) Schwarzschild black holes // General relativity: an introduction for physicists. — Cambridge University Press, 2006. — P. 265. — ISBN 0-521-82951-8.

Разумеется, масса Гаргантюа была выбрана так, чтобы не разорвать приливами астронавтов.
Стоит заметить, что у Торна Гаргантюа 1990-го года несколько массивнее, чем в Интерстеллар:

«Расчеты показали, что чем больше дыра, тем меньшая тяга требуется ракете для удержания ее на окружности в 1.0001 горизонта событий. Для болезненной, но терпимой тяги в 10 земных g масса дыры должна быть в 15 триллионов солнечных масс. Самая близкая из таких дыр называется Гаргантюа, находится она на расстоянии 100000 световых лет от нашей галактики и в 100 миллионах световых лет от кластера галактик Дева, вокруг которого вращается Млечный Путь. Фактически она находится вблизи квазара 3C273, в 2 миллиардах световых лет от Млечного Пути...
Выйдя на орбиту Гаргантюа и проведя обычные измерения, вы убеждаетесь, что действительно его масса равна 15 триллионам солнечных масс и что вращается он очень медленно. Из этих данных вы вычисляете, что длина окружности его горизонта составляет 29 световых лет. Наконец, рассчитывает, что это дыра, окрестность которой вы можете исследовать, испытывая допустимые приливные силы и ускорение!"

В книге «The Science of Interstellar» 2014-го года, где Кип Торн описывает научные аспекты работы над фильмом, он приводит уже цифру 100 миллионов масс солнца - но замечая, что это минимальная масса, которая может быть у «комфортной» в отношении приливных сил черной дыры.

5) Как может существовать планета Миллера так близко от черной дыры? Не разорвет ли ее приливными силами?

Астроном Фил Плейнт, известный под кличкой «Плохой Астроном» за свой безудержный скептицизм, просто не смог пройти мимо Интерстеллар. К тому же до этого он злобно разрушал своим сверлящим скепсисом многие нашумевшие фильмы, например «Гравитацию».

«Я действительно с нетерпением ждал Интерстеллар.. Но то, что я увидел, - было ужасно. Это полный провал. Мне все очень, очень не понравилось»
- пишет он в своей статье от 6-го ноября.
Фил говорит, что относительно научной части фильм является полнейшей туфтой. Что даже в гипотетических рамках не может соответствовать современным научным представлениям. Особенно он проехался по планете Миллера. По его словам, планета может устойчиво вращаться вокруг такой черной дыры, но ее орбита должна быть как минимум в три раза больше размера самой Гаргантюа. Часы будут идти медленнее, чем на Земле, но всего на 20 процентов. Устойчивость планеты, близкой к черной дыре, как показано в фильме - это невозможная выдумка. К тому же ее совершенно разорвут на части приливные силы черной дыры.

Но 9-го ноября Плейнт появляется с новой статьей. Он ее называет Follow-Up: Interstellar Mea Culpa . Неримеримый научный критик решил покаяться.

«Снова я напортачил. Но независимо от величины своих ошибок, я всегда стараюсь признавать их. В конце-концов, сама наука заставляет нас признавать свои ошибки и учиться на них!»

Фил Плейнт признал, что допустил ошибки в своих соображениях и пришел к неверным выводам:

«В своем обзоре я говорил о планете Миллера, вращавшейся близко к черной дыре. Час, проведенный на планете равен семи земным годам. Моя претензия состояла в том, что при таком замедлении времени стабильная орбита планеты была бы невозможной.
И это правда... для невращающейся черной дыры. Моя ошибка состояла в том. что я не использовал правильные уравнения для черных дыр, которая быстро вращалась! Это сильно меняет картину пространства-времени возле черной дыры. Сейчас я понимаю, устойчивая орбита у данной планеты вокруг черной дыры вполне может существовать, причем настолько близко к горизонту событий, что указанное в фильме замедление времени возможно. В общем, я был не прав.
Я утверждал также в своем первоначальном анализе, что гравитационные приливы разорвут эту планету на части. Я консультировался с парой астрофизиков, которые также сказали, что приливы Гаргантюа, вероятно, должны уничтожить планету, но математически это пока что не подтверждено. Они до сих пор работают над решением этой задачи - и как только она будет решена, я опубликую решение. Я сам не могу сказать, был ли я прав, или нет в своем анализе, - и даже если я был прав, мои соображения по-прежнему касались только невращающейся черной дыры, так что они не являются справедливыми для этого случая.
Чтобы решить такую задачу, нужно обсудить множество математических проблем. Но я не знаю точно, насколько именно далеко была планета Миллера от Гаргантюа, и поэтому очень трудно сказать, разрушили бы ее приливы, или нет. Книгу физика и исполнительного продюсера фильма Кипа Торна «The Science of Interstellar» я еще не читал - думаю, она прольет свет на эту проблему.
Тем не менее, я ошибался насчет стабильности орбиты - и я сейчас считаю должным отменить эту мою претензию к фильму.
Итак, подведу итог: физическая картина вблизи черной дыры, продемонстрированная в фильме, является на самом деле соответствующей науке. Я сделал ошибку, за которую я приношу свои извинения.

Ikjyot Singh Kohli, физик-теоретик из Йорского университета, на своей странице привел решения уравнений, доказывая, что существование планеты Миллера вполне возможно.
Он нашел решение, при котором планета будет существовать в продемонстрированных в фильме условиях. Но также обсудил и проблему приливных сил, которые должны якобы разорвать планету. Его решение показывает, что приливные силы слишком слабы, чтобы ее разорвать.
Он даже обосновал наличие гигантских волн на поверхности планеты.

Соображения Сингха Коли с примерами уравнений тут:

Так показывает нахождение планеты Миллера Торн в своей книге:

Есть точки, в которых орбита будет не устойчива. Но Торн нашел также и устойчивую орбиту:

Приливные силы не разрывают планету, но деформируют ее:

Если планета вращается вокруг источника приливных сил, то они будут постоянно менять свое направление, по-разному деформируя ее в разных точках орбиты. В одном положении планета будет сплющена с востока на запад и вытянута с севера на юг. В другой точке орбиты - сдавлена с севера на юг и растянута с востока на запад. Поскольку гравитация Гаргантюа весьма велика, то меняющиеся внутренние деформации и трение будет нагревать планету, делая ее очень горячей. Но, как мы видели в фильме, планета Миллера выглядит совсем иначе.
Поэтому справедливым будет полагать, что планета всегда повернута к Гаргантюа одной стороной. И это естественно для многих тел, которые вращаются вокруг боле сильного гравитирующего объекта. Например, наша Луна, многие спутники Юпитера и Сатурна всегда повернуты к планете только одной стороной.

Также Торн остановился на еще одном важном моменте:

«Если смотреть на планету Миллера с планеты Манна, то можно увидеть, как она вращается вокруг Гаргантюа с орбитальным периодом 1.7 часа, проходя за это время почти миллиард километров. Это примерно половина скорости света! Из-за замедления времени для экипажа Рейнджера этот период уменьшается, составляя десятую долю секунды. Это очень быстро! И разве это не намного быстрее, чем скорость света? Нет, ведь в системе отчета вихреобразно движущегося пространства вокруг Гаргантюа планета движется медленее, чем свет.
В моей научной модели фильме планета повернута к черной дыре всегда одной стороной, и вращается с бешеной скоростью. Не разорвут ли центробежные силы планету на части из-за этой скорости? Нет: ее снова спасает вращающийся вихрь пространства. Планета не будет ощущать разрушительных центробежных сил, так как само пространство вращается вместе с ней с той же самой скоростью»

6) Как возможны настолько гигантские волны на поверхности планеты Миллера?

На этот вопрос Торн отвечает так:

«Я сделал необходимые физические расчеты, и нашел две возможных научных интерпретации.
Оба этих решения требуют, чтобы положение оси вращения планеты было не стабильным. Планета должна раскачиваться в некотором диапазоне, как показано на рисунке. Это происходит под воздействие гравитации Гаргантюа.

Когда я вычислил период этого раскачивания, то я получил величину около часа. И это совпало с тем временем, который выбрал Крис - до этого еще не знавший о моей научной интерпретации!
Моя вторая модель - это цунами. Приливные силы Гаргантюа может деформировать кору планеты Миллера, с таким же периодом (1 час). Эти деформации могут создавать очень сильные землетрясения. Они могут вызывать такие цунами, которые будут значительно превосходить любые, увиденные когда-либо на Земле.»

7) Как возможны такие невероятные маневры Эндуренс и Рейнджера на орбите Гаргантюа?

1) Эндуренс движется по парковочной орбите с радиусом, равным 10 радиусом Гаргантюа, и экипаж направляющийся на п. Миллера, движется со скоростью С/3. Планета Миллера движется со скоростью 55% от С.
2) Рейнджер должен сбросить скорость от С/3 на меньшую, чтобы снизить орбиту и приблизиться к п. Миллера. Он замедляется до с/4, и достигает окрестностей планеты (разумеется, тут надо соблюсти строгий расчет, чтобы попасть. Но это не проблема для компьютера)

Механизм для столь существенного изменения скорости описан Торном:

“Звезды и малые черные дыры вращаются вокруг гигантских черных дыр, как Гаргантюа. Именно они могут создавать определяющие силы, которые отклонят Рейнджер от его круговой орбиты и направят его вниз - к Гаргантюа. Подобный гравитационный маневр часто используется НАСА в Солнечной системе, хотя тут используется гравитация планет, а не черной дыры. Подробности этого маневра не раскрываются в Интерстеллар, но сам маневр упоминается, когда они говорят о использовании нейтронной звезды, чтобы замедлить скорость.“

Нейтронная звезда показана Торном на рисунке:

Свидание с нейтронной звездой позволяет изменить скорость:

“Такое приближение может очень опасным, т.е. Рейнджер должен приблизиться к нейтронной звезде (или малой черной дыре) достаточно близко, чтобы ощущать сильную гравитацию. Если тормозящая звезда или черна дыра с меньшим радиусом, чем 10 000 км, то людей и Рейнджер разорвут приливные силы. Поэтому нейтронная звезда должна быть по меньшей мере размером 10 000 км.
Я обсуждал эту проблему с Ноланом во время производства сценария, предложив черную дыру или нейтронную звезду на выбор. Нолан выбрал нейтронную звезду. Почему? Потому что он не хотел запутать зрителей двумя черными дырами.”
“Черные дыры, называемые IMBH (Intermediate-Mass Black Holes) - в десять тысяч раз меньше, чем Гаргантюа, но в тысячу раз тяжелее, чем обычные черные дыры. Такой отклонитель Куперу необходим. Некоторые IMBH, как полагают, образуются в шаровых скоплениях, а некоторые находятся в ядрах галактик, где находятся и гигантские черные дыры. Ближайшим примером является Туманность Андромеды, - самая близкая к нам галактика. В ядре Андромеды скрывается дыра, подобная Гаргантюа - примерно 100 млн. солнечных масс. Когда IMBH проходит через какой-либо регион с плотной звездной населенностью, то эффект “динамического трения” замедляет скорость IMBH , и она падает все ниже и ниже, все ближе оказываясь к гигантской черной дыре. В результате IMBH оказывается в непосредственной близости от сверхмассивной черной дыры. Таким образом, природа могла вполне обеспечить Купера таким источником гравитационного отклонения."

Реальное применение "гравитационной рогатки" смотрите на примере межпланетных космических аппаратов, - например, ознакомьтесь с историей Вояджеров.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png